Quantum versus classical transport of energy in coupled two-level
systems
- URL: http://arxiv.org/abs/2007.15669v2
- Date: Tue, 1 Jun 2021 20:21:53 GMT
- Title: Quantum versus classical transport of energy in coupled two-level
systems
- Authors: I. Medina, S. V. Moreira, and F. L. Semi\~ao
- Abstract summary: We study the cases for which either coherent or incoherent energy hopping takes place in the chain.
Our results strongly suggest the significant role played by quantum invasiveness as a resource for quantum transport.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of energy transport in a chain of coupled quantum
systems with the goal of shedding light on how nonclassical resources can
affect transport. We study the cases for which either coherent or incoherent
energy hopping takes place in the chain. Here, incoherent energy hopping is
referred to as the "classical" scenario in allusion to its fully diagonal
dynamics in the basis formed by the eigenstates of the decoupled sites. We
focus on the case of a linear chain of two-level sites and find a hopping rate
threshold above which the coherent quantum case is more efficient than the
incoherent counterpart. We then link the quantum hopping rate to the coherence
global maximum, which allows us to state that there is a coherence threshold
above which the quantum scenario is more efficient. Next, we consider the
integrated coherence generated by the dynamics and show how it is related to
what is known as the invasiveness of a quantum operation. Our results strongly
suggest the significant role played by quantum invasiveness as a resource for
quantum transport.
Related papers
- Universal scaling of quantum state transport in one-dimensional topological chain under nonadiabatic dynamics [4.9347081318119015]
We study the scaling of quantum state transport in a one-dimensional topological system subject to a linear drive.
We illustrate the power-law dependencies of the quantum state's transport distance, width, and peak magnitude on the driving velocity.
arXiv Detail & Related papers (2024-06-26T02:08:28Z) - Quantum fluctuation dynamics of open quantum systems with collective
operator-valued rates, and applications to Hopfield-like networks [0.0]
We consider a class of open quantum many-body systems that evolves in a Markovian fashion, the dynamical generator being in GKS-Lindblad form.
Focusing on the dynamics emerging in the limit of infinitely large systems, we build on the exactness of the mean-field equations for the dynamics of average operators.
In this framework, we derive the dynamics of quantum fluctuation operators, that can be used in turn to understand the fate of quantum correlations in the system.
arXiv Detail & Related papers (2024-02-01T17:23:32Z) - Quantum teleportation and dynamics of quantum coherence and metrological
non-classical correlations for open two-qubit systems: A study of Markovian
and non-Markovian regimes [0.0]
We study the dynamics of non-classical correlations and quantum coherence in open quantum systems.
Our focus is on a system of two qubits in two distinct physical situations.
We establish a quantum teleportation strategy based on the two different physical scenarios.
arXiv Detail & Related papers (2023-09-05T11:41:04Z) - From Goldilocks to Twin Peaks: multiple optimal regimes for quantum
transport in disordered networks [68.8204255655161]
Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport.
This paper shows that a consistent subset of physically modelled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.
arXiv Detail & Related papers (2022-10-21T10:57:16Z) - Biorthogonal resource theory of genuine quantum superposition [0.0]
We introduce a pseudo-Hermitian representation of the density operator, wherein its diagonal elements correspond to biorthogonal extensions of Kirkwood-Dirac quasi-probabilities.
This representation provides a unified framework for the inter-basis quantum superposition and basis state indistinguishability, giving rise to what we term as textitgenuine quantum superposition.
arXiv Detail & Related papers (2022-10-05T17:17:37Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - The Entanglement-Assisted Communication Capacity over Quantum
Trajectories [6.836162272841265]
We show that indefinite causal order of quantum channels enables the violation of bottleneck capacity.
We derive capacity expressions of entanglement-assisted classical and quantum communication for arbitrary quantum Pauli channels.
arXiv Detail & Related papers (2021-10-15T13:09:54Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Creating and destroying coherence with quantum channels [62.997667081978825]
We study optimal ways to create a large amount of quantum coherence via quantum channels.
correlations in multipartite systems do not enhance the ability of a quantum channel to create coherence.
We show that a channel can destroy more coherence when acting on a subsystem of a bipartite state.
arXiv Detail & Related papers (2021-05-25T16:44:13Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.