Biorthogonal resource theory of genuine quantum superposition
- URL: http://arxiv.org/abs/2210.02398v2
- Date: Sun, 14 Apr 2024 18:00:44 GMT
- Title: Biorthogonal resource theory of genuine quantum superposition
- Authors: Onur Pusuluk,
- Abstract summary: We introduce a pseudo-Hermitian representation of the density operator, wherein its diagonal elements correspond to biorthogonal extensions of Kirkwood-Dirac quasi-probabilities.
This representation provides a unified framework for the inter-basis quantum superposition and basis state indistinguishability, giving rise to what we term as textitgenuine quantum superposition.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The phenomenon of quantum superposition manifests in two distinct ways: it either spreads out across non-orthogonal basis states or remains concealed within their overlaps. Despite its profound implications, the resource theory of superposition often neglects the quantum superposition residing within these overlaps. However, this component is intricately linked to a form of state indistinguishability and can give rise to quantum correlations. In this paper, we introduce a pseudo-Hermitian representation of the density operator, wherein its diagonal elements correspond to biorthogonal extensions of Kirkwood-Dirac quasi-probabilities. This representation provides a unified framework for the inter-basis quantum superposition and basis state indistinguishability, giving rise to what we term as \textit{genuine} quantum superposition. Moreover, we propose appropriate generalizations of current superposition measures to quantify genuine quantum superposition that serves as the fundamental notion of nonclassicality from which both quantum coherence and correlations emerge. Finally, we explore potential applications of our theoretical framework, particularly in the quantification of electron delocalization in chemical bonding and aromaticity.
Related papers
- An explicit tensor notation for quantum computing [0.0]
This paper introduces a formalism that aims to describe the intricacies of quantum computation.
The focus is on providing a comprehensive representation of quantum states for multiple qubits and the quantum gates that manipulate them.
arXiv Detail & Related papers (2024-09-16T17:21:17Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Step-by-step derivation of the algebraic structure of quantum mechanics
(or from nondisturbing to quantum correlations by connecting incompatible
observables) [0.0]
This paper provides a step-by-step derivation of the quantum formalism.
It helps us to understand why this formalism is as it is.
arXiv Detail & Related papers (2023-03-08T19:27:24Z) - Entanglement measures for two-particle quantum histories [0.0]
We prove that bipartite quantum histories are entangled if and only if the Schmidt rank of this matrix is larger than 1.
We then illustrate the non-classical nature of entangled histories with the use of Hardy's overlapping interferometers.
arXiv Detail & Related papers (2022-12-14T20:48:36Z) - Controlling Collective Phenomena by Engineering the Quantum State of
Force Carriers: The Case of Photon-Mediated Superconductivity and its
Criticality [0.0]
How are the scattering between the constituents of matter and the resulting collective phenomena affected by preparing the force carriers in different quantum states?
This question has become experimentally relevant in a specific non-relativistic version of QED implemented within materials.
We show that by preparing photons in pure Fock states one can enhance pair correlations, and even control the criticality and universality of the superconducting phase transition by the choice of the number of photons.
arXiv Detail & Related papers (2022-07-14T18:00:05Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Localizable quantum coherence [0.0]
Coherence is a fundamental notion in quantum mechanics, defined relative to a reference basis.
We put forward a notion of localizable coherence as the coherence that can be stored in a particular subsystem.
We show that it can be applied to reveal the real-space structure of states of interest in quantum many-body theory.
arXiv Detail & Related papers (2020-05-06T17:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.