論文の概要: Unidentified Floating Object detection in maritime environment using
dictionary learning
- arxiv url: http://arxiv.org/abs/2007.15757v1
- Date: Thu, 30 Jul 2020 21:59:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-05 14:00:03.292971
- Title: Unidentified Floating Object detection in maritime environment using
dictionary learning
- Title(参考訳): 辞書学習を用いた海洋環境における未知の浮体物体検出
- Authors: Darshan Venkatrayappa, Agn\`es Desolneux, Jean-Michel Hubert, Josselin
Manceau
- Abstract要約: 海上環境における未同定浮動物体の検出手法を提案する。
提案手法は, 浮動物体の視覚的外観, 形状, 位置を事前に知ることなく検出することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Maritime domain is one of the most challenging scenarios for object detection
due to the complexity of the observed scene. In this article, we present a new
approach to detect unidentified floating objects in the maritime environment.
The proposed approach is capable of detecting floating objects without any
prior knowledge of their visual appearance, shape or location. The input image
from the video stream is denoised using a visual dictionary learned from a
K-SVD algorithm. The denoised image is made of self-similar content. Later, we
extract the residual image, which is the difference between the original image
and the denoised (self-similar) image. Thus, the residual image contains noise
and salient structures (objects). These salient structures can be extracted
using an a contrario model. We demonstrate the capabilities of our algorithm by
testing it on videos exhibiting varying maritime scenarios.
- Abstract(参考訳): 海洋ドメインは、観測されたシーンの複雑さのため、オブジェクト検出の最も難しいシナリオの1つである。
本稿では,海上環境における未知の浮動物体を検出するための新しい手法を提案する。
提案手法は,浮動物体の視覚的外観,形状,位置を事前に知ることなく検出することができる。
映像ストリームからの入力画像は、K-SVDアルゴリズムから学習した視覚辞書を用いて復調する。
復号化画像は自己相似コンテンツからなる。
その後、原画像と無声(自己類似)画像との差である残像を抽出する。
これにより、残像はノイズと健全な構造(オブジェクト)を含む。
これらの塩分構造は、対トロリオモデルを用いて抽出することができる。
様々な海上シナリオを示すビデオでテストすることで、アルゴリズムの能力を実証する。
関連論文リスト
- Deepfake detection by exploiting surface anomalies: the SurFake approach [29.088218634944116]
本稿では, ディープフェイク生成が, 買収時のシーン全体の特性に与える影響について検討する。
画像に描かれた表面の特性を解析することにより、深度検出のためにCNNを訓練するのに使用できる記述子を得ることができる。
論文 参考訳(メタデータ) (2023-10-31T16:54:14Z) - Diff-DOPE: Differentiable Deep Object Pose Estimation [29.703385848843414]
Diff-DOPE, 画像入力を行う6-DoFポーズ精細機, オブジェクトの3次元テクスチャモデル, オブジェクトの初期ポーズを紹介する。
この方法は、画像とモデルの投影の間の視覚的エラーを最小限に抑えるために、オブジェクトのポーズを更新するために微分可能なレンダリングを使用する。
このシンプルで効果的なアイデアは、ポーズ推定データセットで最先端の結果を得ることができることを示す。
論文 参考訳(メタデータ) (2023-09-30T18:52:57Z) - A Semi-supervised Object Detection Algorithm for Underwater Imagery [10.017195276758455]
本稿では, 変分オートエンコーダ(VAE)に基づく半教師付きフレームワークを用いて, 人工物体を異常として扱い, 検出することを提案する。
本研究では,学習した低次元潜在空間における画像データをクラスタリングし,異常な特徴を含む可能性のある画像を抽出する手法を提案する。
大規模な画像データセットに両方の手法を適用することで、人間のオペレーターが興味のある対象を特定するために、偽陽性率の低い候補異常なサンプルを提示できることを実証する。
論文 参考訳(メタデータ) (2023-06-07T23:40:04Z) - Few-Shot Object Detection by Knowledge Distillation Using
Bag-of-Visual-Words Representations [58.48995335728938]
対象検出器の学習を導くための新しい知識蒸留フレームワークを設計する。
まず,視覚単語の代表的な袋を学習するための単語の位置認識モデルを提案する。
次に、2つの異なる特徴空間において、画像が一貫したBoVW表現を持つべきであるという事実に基づいて知識蒸留を行う。
論文 参考訳(メタデータ) (2022-07-25T10:40:40Z) - Discovering Objects that Can Move [55.743225595012966]
手動ラベルなしでオブジェクトを背景から分離する、オブジェクト発見の問題について検討する。
既存のアプローチでは、色、テクスチャ、位置などの外観の手がかりを使用して、ピクセルをオブジェクトのような領域に分類する。
私たちは、動的オブジェクト -- 世界で独立して動くエンティティ -- にフォーカスすることを選びます。
論文 参考訳(メタデータ) (2022-03-18T21:13:56Z) - Compositional Sketch Search [91.84489055347585]
フリーハンドスケッチを用いて画像コレクションを検索するアルゴリズムを提案する。
シーン構成全体を特定するための簡潔で直感的な表現として描画を利用する。
論文 参考訳(メタデータ) (2021-06-15T09:38:09Z) - Data Augmentation for Object Detection via Differentiable Neural
Rendering [71.00447761415388]
注釈付きデータが乏しい場合、堅牢なオブジェクト検出器を訓練することは困難です。
この問題に対処する既存のアプローチには、ラベル付きデータからラベル付きデータを補間する半教師付き学習が含まれる。
オブジェクト検出のためのオフラインデータ拡張手法を導入し、新しいビューでトレーニングデータを意味的に補間する。
論文 参考訳(メタデータ) (2021-03-04T06:31:06Z) - Deep Texture-Aware Features for Camouflaged Object Detection [69.84122372541506]
本稿では, テクスチャ認識モジュールを定式化し, 深層畳み込みニューラルネットワークにおけるテクスチャ認識の特徴を学習する。
我々は,キャモフラージュされた物体検出のためのベンチマークデータセット上で,定性的かつ定量的にネットワークを評価した。
論文 参考訳(メタデータ) (2021-02-05T04:38:32Z) - Static object detection and segmentation in videos based on dual
foregrounds difference with noise filtering [0.0]
本稿では,映像中の静止物体検出とセグメンテーション手法について述べる。
提案手法は, 岩盤ブレーカー局に適用し, 実データ, 合成データ, および2つの公開データを用いて有効に検証した。
論文 参考訳(メタデータ) (2020-12-19T15:01:59Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
移動可能なカメラで撮影された単一の画像で、自己教師付き検出とセグメンテーションのアプローチを導入する。
我々は、提案に基づくセグメンテーションネットワークのトレーニングに利用する自己教師付き損失関数を利用する。
本手法は,標準ベンチマークから視覚的に切り離された画像の人間の検出とセグメント化に応用し,既存の自己監督手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-11T08:34:40Z) - Moving object detection for visual odometry in a dynamic environment
based on occlusion accumulation [31.143322364794894]
RGB-D画像を用いた移動物体検出アルゴリズムを提案する。
提案アルゴリズムは,背景モデルの推定を必要としない。
二乗回帰重みを持つVO法として高密度視覚計測(DVO)を用いる。
論文 参考訳(メタデータ) (2020-09-18T11:01:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。