Theoretical studies on quantum imaging with time-integrated
single-photon detection under realistic experimental conditions
- URL: http://arxiv.org/abs/2112.10335v2
- Date: Wed, 6 Apr 2022 03:10:21 GMT
- Title: Theoretical studies on quantum imaging with time-integrated
single-photon detection under realistic experimental conditions
- Authors: Byeong-Yoon Go, Changhyoup Lee, Kwang-Geol Lee
- Abstract summary: We study a quantum-enhanced differential measurement scheme that uses quantum probes and single-photon detectors.
We consider two typical non-classical states of light as a probe, a twin-Fock state and a two-mode squeezed vacuum state.
Their signal-to-noise ratios that quantifies the capability of detecting the defect are compared with a corresponding classical imaging scheme.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study a quantum-enhanced differential measurement scheme that uses quantum
probes and single-photon detectors to measure a minute defect in the absorption
parameter of an analyte under investigation. For the purpose, we consider two
typical non-classical states of light as a probe, a twin-Fock state and a
two-mode squeezed vacuum state. Their signal-to-noise ratios (SNRs) that
quantifies the capability of detecting the defect are compared with a
corresponding classical imaging scheme that employs a coherent state input. A
quantitative comparison is made in terms of typical system imperfections such
as photon loss and background noise that are common in practice. It is shown
that a quantum enhancement in SNR can be described generally by the Mandel
Q-parameter and the noise-reduction-factor, which characterize an input state
that is incident to the analyte. We thereby identify the conditions under which
the quantum enhancement remains and can be further increased. We expect our
study to provide a guideline for improving the SNR in quantum imaging
experiments employing a differential measurement scheme with time-integrated
single-photon detectors.
Related papers
- Nonlocality enhanced precision in quantum polarimetry via entangled photons [0.0]
We present a nonlocal quantum approach to polarimetry, leveraging the phenomenon of entanglement in photon pairs to enhance the precision in sample property determination.
We calculate the quantum Fisher information (QFI) and compare the accuracy and sensitivity for the cases of single sample channel versus two channel quantum state tomography measurements.
Such a quantum-enhanced nonlocal polarimetry holds promise for advancing diverse fields including material science, biomedical imaging, and remote sensing.
arXiv Detail & Related papers (2024-02-19T08:19:10Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Quantum advantage of time-reversed ancilla-based metrology of absorption
parameters [2.5499055723658097]
We consider the important problem of estimation of transmission of light by a sample, with losses due to absorption and scattering.
We show, through the determination of the quantum Fisher information, that the ancilla strategy leads to the best possible precision in single-mode estimation.
arXiv Detail & Related papers (2023-10-09T20:41:53Z) - Super-resolution and super-sensitivity of quantum LiDAR with multi-photonic state and binary outcome photon counting measurement [2.2120851074630177]
We are using multi-photonic state (MPS), superposition of four coherent states as the input state and binary outcome parity photon counting measurement.
We found enhancement in resolution and phase sensitivity in comparison to the coherent state and even coherent superposition state based quantum LiDAR.
arXiv Detail & Related papers (2023-09-21T13:46:26Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Two-Photon Interference of Single Photons from Dissimilar Sources [0.0]
Entanglement swapping and heralding are at the heart of many protocols for distributed quantum information.
We develop a theoretical description of pulsed two-photon interference of photons from dissimilar sources.
We study their dependence on critical system parameters such as quantum state lifetime and frequency detuning.
arXiv Detail & Related papers (2022-02-10T07:51:27Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z) - Scheme for sub-shot-noise transmission measurement using a time
multiplexed single-photon source [0.0]
We simulate an experiment that uses a multiplexed single-photon source based on pair generation by continuous spontaneous parametric down conversion.
With such source, the sub-Poissonian statistics of the output signal is the key for achieving sub-shot-noise performance.
Results show that sub-shot-noise performance can be achieved, even without using number-resolving detectors.
arXiv Detail & Related papers (2020-07-31T04:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.