Determination of weak squeezed vacuum state through photon statistics
measurement
- URL: http://arxiv.org/abs/2112.03666v1
- Date: Tue, 7 Dec 2021 12:55:11 GMT
- Title: Determination of weak squeezed vacuum state through photon statistics
measurement
- Authors: Guanhua Zuo, Yuchi Zhang, Jing Li, Shiyao Zhu, Yanqiang Guo, Tiancai
Zhang
- Abstract summary: Weak squeezed vacuum light plays an important role in quantum storage and generation of various quantum sources.
General homodyne detection (HD) cannot determine weak squeezing due to the low signal to noise ratio and the limited resolution of the HD system.
This method can be used to measure other quantum features for various quantum states with extremely weak non-classicality.
- Score: 4.064808764676522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weak squeezed vacuum light, especially resonant to the atomic transition,
plays an important role in quantum storage and generation of various quantum
sources. However, the general homodyne detection (HD) cannot determine weak
squeezing due to the low signal to noise ratio and the limited resolution of
the HD system. Here we provide an alternative method based on photon statistics
measurement to determine the weak squeezing of the squeezed vacuum light
generated from an optical parametric oscillator working far below the
threshold. The approach is established the relationship between the squeezing
parameter and the second-order degree of coherence. The theoretical analysis
agrees well with the experiment results. The advantage of this method is that
it provides a feasible and reliable experimental measure to determine the weak
squeezing with high precision and the measurement is independent on the
detection efficiency. This method can be used to measure other quantum features
for various quantum states with extremely weak non-classicality.
Related papers
- Nonlocality enhanced precision in quantum polarimetry via entangled photons [0.0]
We present a nonlocal quantum approach to polarimetry, leveraging the phenomenon of entanglement in photon pairs to enhance the precision in sample property determination.
We calculate the quantum Fisher information (QFI) and compare the accuracy and sensitivity for the cases of single sample channel versus two channel quantum state tomography measurements.
Such a quantum-enhanced nonlocal polarimetry holds promise for advancing diverse fields including material science, biomedical imaging, and remote sensing.
arXiv Detail & Related papers (2024-02-19T08:19:10Z) - Quantum advantage of time-reversed ancilla-based metrology of absorption
parameters [2.5499055723658097]
We consider the important problem of estimation of transmission of light by a sample, with losses due to absorption and scattering.
We show, through the determination of the quantum Fisher information, that the ancilla strategy leads to the best possible precision in single-mode estimation.
arXiv Detail & Related papers (2023-10-09T20:41:53Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Estimating the concentration of chiral media with bright squeezed light [77.34726150561087]
We quantify the performance of Gaussian probes in estimating the concentration of chiral analytes.
Four-fold precision enhancement is achievable using state-of-the-art squeezing levels and intensity measurements.
arXiv Detail & Related papers (2022-08-21T17:18:10Z) - Experimentally determining the incompatibility of two qubit measurements [55.41644538483948]
We describe and realize an experimental procedure for assessing the incompatibility of two qubit measurements.
We demonstrate this fact in an optical setup, where the qubit states are encoded into the photons' polarization degrees of freedom.
arXiv Detail & Related papers (2021-12-15T19:01:44Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Sample-efficient benchmarking of multi-photon interference on a boson
sampler in the sparse regime [3.6083004172899447]
We show how to assess the quality of photonic interference in a linear optical quantum device (boson sampler)
We use a sparse set of samples to test whether a given boson sampling experiment meets known upper bounds on the level of noise permissible to demonstrate a quantum advantage.
arXiv Detail & Related papers (2020-08-20T17:08:56Z) - Scheme for sub-shot-noise transmission measurement using a time
multiplexed single-photon source [0.0]
We simulate an experiment that uses a multiplexed single-photon source based on pair generation by continuous spontaneous parametric down conversion.
With such source, the sub-Poissonian statistics of the output signal is the key for achieving sub-shot-noise performance.
Results show that sub-shot-noise performance can be achieved, even without using number-resolving detectors.
arXiv Detail & Related papers (2020-07-31T04:26:53Z) - Non-Markovian effect on quantum optical metrology under dissipative
environment [1.6058099298620423]
Non-Markovian effects are shown to be effective in performing quantum optical metrology under locally dissipative environments.
Our work provides a recipe to realize ultrasensitive measurements in the presence of noise by utilizing non-Markovian effects.
arXiv Detail & Related papers (2020-02-09T14:50:54Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.