A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection
- URL: http://arxiv.org/abs/2307.03759v3
- Date: Fri, 9 Aug 2024 07:39:41 GMT
- Title: A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection
- Authors: Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi, Geoffrey I. Webb, Irwin King, Shirui Pan,
- Abstract summary: Time series analytics is crucial to unlocking the wealth of information implicit in available data.
Recent advancements in graph neural networks (GNNs) have led to a surge in GNN-based approaches for time series analysis.
This survey brings together a vast array of knowledge on GNN-based time series research, highlighting foundations, practical applications, and opportunities of graph neural networks for time series analysis.
- Score: 98.41798478488101
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series are the primary data type used to record dynamic system measurements and generated in great volume by both physical sensors and online processes (virtual sensors). Time series analytics is therefore crucial to unlocking the wealth of information implicit in available data. With the recent advancements in graph neural networks (GNNs), there has been a surge in GNN-based approaches for time series analysis. These approaches can explicitly model inter-temporal and inter-variable relationships, which traditional and other deep neural network-based methods struggle to do. In this survey, we provide a comprehensive review of graph neural networks for time series analysis (GNN4TS), encompassing four fundamental dimensions: forecasting, classification, anomaly detection, and imputation. Our aim is to guide designers and practitioners to understand, build applications, and advance research of GNN4TS. At first, we provide a comprehensive task-oriented taxonomy of GNN4TS. Then, we present and discuss representative research works and introduce mainstream applications of GNN4TS. A comprehensive discussion of potential future research directions completes the survey. This survey, for the first time, brings together a vast array of knowledge on GNN-based time series research, highlighting foundations, practical applications, and opportunities of graph neural networks for time series analysis.
Related papers
- A Systematic Literature Review of Spatio-Temporal Graph Neural Network Models for Time Series Forecasting and Classification [7.58512888676767]
This review provides a comprehensive overview of approaches and application domains various GNNs for time series classification and forecasting.
A database search was conducted, and over 150 journal papers were selected for a detailed examination of the current state-of-the-art in the field.
arXiv Detail & Related papers (2024-10-29T08:05:10Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Graph Neural Networks for temporal graphs: State of the art, open
challenges, and opportunities [15.51428011794213]
Graph Neural Networks (GNNs) have become the leading paradigm for learning on (static) graph-structured data.
Recent years, GNN-based models for temporal graphs have emerged as a promising area of research to extend the capabilities of GNNs.
We provide the first comprehensive overview of the current state-of-the-art of temporal GNN, introducing a rigorous formalization of learning settings and tasks.
We conclude the survey with a discussion of the most relevant open challenges for the field, from both research and application perspectives.
arXiv Detail & Related papers (2023-02-02T11:12:51Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Evidential Temporal-aware Graph-based Social Event Detection via
Dempster-Shafer Theory [76.4580340399321]
We propose ETGNN, a novel Evidential Temporal-aware Graph Neural Network.
We construct view-specific graphs whose nodes are the texts and edges are determined by several types of shared elements respectively.
Considering the view-specific uncertainty, the representations of all views are converted into mass functions through evidential deep learning (EDL) neural networks.
arXiv Detail & Related papers (2022-05-24T16:22:40Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks.
We propose a novel scheme dedicated to overcoming this problem and hence strengthen continual learning in graph neural networks (GNNs)
At the heart of our approach is a generic module, termed as topology-aware weight preserving(TWP)
arXiv Detail & Related papers (2020-12-10T22:30:25Z) - Computing Graph Neural Networks: A Survey from Algorithms to
Accelerators [2.491032752533246]
Graph Neural Networks (GNNs) have exploded onto the machine learning scene in recent years owing to their capability to model and learn from graph-structured data.
This paper aims to make two main contributions: a review of the field of GNNs is presented from the perspective of computing.
An in-depth analysis of current software and hardware acceleration schemes is provided.
arXiv Detail & Related papers (2020-09-30T22:29:27Z) - An Empirical Survey of Data Augmentation for Time Series Classification
with Neural Networks [17.20906062729132]
We survey data augmentation techniques for time series and their application to time series classification with neural networks.
We propose a taxonomy and outline the four families in time series data augmentation, including transformation-based methods, pattern mixing, generative models, and decomposition methods.
We empirically evaluate 12 time series data augmentation methods on 128 time series classification datasets with six different types of neural networks.
arXiv Detail & Related papers (2020-07-31T10:33:54Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
We present two techniques, GNNs over dense fixed graphs for low-dimensional problems and sampling-based GNNs for high-dimensional problems.
We examine the ability of a GNN to tackle planning problems such as identifying critical nodes or learning the sampling distribution in Rapidly-exploring Random Trees (RRT)
Experiments with critical sampling, a pendulum and a six DoF robot arm show GNNs improve on traditional analytic methods as well as learning approaches using fully-connected or convolutional neural networks.
arXiv Detail & Related papers (2020-06-11T08:19:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.