Many-body localization in one dimensional optical lattice with speckle
disorder
- URL: http://arxiv.org/abs/2008.00219v2
- Date: Wed, 30 Sep 2020 12:41:10 GMT
- Title: Many-body localization in one dimensional optical lattice with speckle
disorder
- Authors: Artur Maksymov, Piotr Sierant, and Jakub Zakrzewski
- Abstract summary: Many-body localization transition in speckle disorder falls within the same universality class as the transition in an uncorrelated random disorder.
Speckle potential allows one to study the role of correlations in disorder on the transition.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The many-body localization transition for Heisenberg spin chain with a
speckle disorder is studied. Such a model is equivalent to a system of spinless
fermions in an optical lattice with an additional speckle field. Our numerical
results show that the many-body localization transition in speckle disorder
falls within the same universality class as the transition in an uncorrelated
random disorder, in contrast to the quasiperiodic potential typically studied
in experiments. This hints at possibilities of experimental studies of the role
of rare Griffiths regions and of the interplay of ergodic and localized grains
at the many-body localization transition. Moreover, the speckle potential
allows one to study the role of correlations in disorder on the transition. We
study both spectral and dynamical properties of the system focusing on
observables that are sensitive to the disorder type and its correlations. In
particular, distributions of local imbalance at long times provide an
experimentally available tool that reveals the presence of small ergodic grains
even deep in the many-body localized phase in a correlated speckle disorder.
Related papers
- Phenomenology of many-body localization in bond-disordered spin chains [0.0]
Many-body localization hinders the thermalization of quantum many-body systems in the presence of strong disorder.
In this work, we study the MBL regime in bond-disordered spin-1/2 XXZ spin chain.
arXiv Detail & Related papers (2024-05-16T12:52:47Z) - Observation of reentrant metal-insulator transition in a random-dimer
disordered SSH lattice [5.594103291124019]
We present the experimental observation of reentrant localization using an experimentally friendly model, a photonic SSH lattice with random-dimer disorder.
In the presence of correlated on-site potentials, certain eigenstates exhibit extended behavior following the localization transition as the disorder continues to increase.
Our study enriches the understanding of transport in mediums and accentuates the substantial potential of integrated photonics for the simulation of intricate condensed matter physics phenomena.
arXiv Detail & Related papers (2023-07-11T12:25:58Z) - Spectral response of disorder-free localized lattice gauge theories [0.22940141855172028]
We show that certain lattice gauge theories exhibiting disorder-free localization have a characteristic response in spatially averaged spectral functions.
We also show that local spectral functions of large finite clusters host discrete peaks whose positions agree with our analytical estimates.
arXiv Detail & Related papers (2022-11-25T19:00:01Z) - Pair localization in dipolar systems with tunable positional disorder [0.0]
We study a Heisenberg XXZ spin model where the disorder is exclusively due to random spin-spin couplings.
We show that this system exhibits a localization crossover and identify strongly interacting pairs as emergent local conserved quantities.
arXiv Detail & Related papers (2022-07-29T04:31:47Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Perturbative instability towards delocalization at phase transitions
between MBL phases [0.0]
We find evidence for a perturbative instability of localization at finite energy densities once interactions are added.
We introduce a novel diagnostic, the "susceptibility of entanglement", which allows us to perturbatively probe the effect of adding interactions on the entanglement properties of eigenstates.
arXiv Detail & Related papers (2020-08-20T17:59:31Z) - Subdiffusion via Disordered Quantum Walks [52.77024349608834]
We experimentally prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to model general subdiffusive phenomena.
Our experiment simulates such phenomena by means of a finely controlled insertion of various levels of disorder during the evolution of the walker.
This allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson localization to normal diffusion.
arXiv Detail & Related papers (2020-07-24T13:56:09Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.