Spectral response of disorder-free localized lattice gauge theories
- URL: http://arxiv.org/abs/2211.14328v1
- Date: Fri, 25 Nov 2022 19:00:01 GMT
- Title: Spectral response of disorder-free localized lattice gauge theories
- Authors: Nilotpal Chakraborty, Markus Heyl, Petr Karpov and Roderich Moessner
- Abstract summary: We show that certain lattice gauge theories exhibiting disorder-free localization have a characteristic response in spatially averaged spectral functions.
We also show that local spectral functions of large finite clusters host discrete peaks whose positions agree with our analytical estimates.
- Score: 0.22940141855172028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that certain lattice gauge theories exhibiting disorder-free
localization have a characteristic response in spatially averaged spectral
functions: a few sharp peaks combined with vanishing response in the zero
frequency limit. This reflects the discrete spectra of small clusters of
kinetically active regions formed in such gauge theories when they fragment
into spatially finite clusters in the localized phase due to the presence of
static charges. We obtain the transverse component of the dynamic structure
factor, which is probed by neutron scattering experiments, deep in this phase
from a combination of analytical estimates and a numerical cluster expansion.
We also show that local spectral functions of large finite clusters host
discrete peaks whose positions agree with our analytical estimates. Further,
information spreading, diagnosed by an unequal time commutator, halts due to
real space fragmentation. Our results can be used to distinguish the
disorder-free localized phase from conventional paramagnetic counterparts in
those frustrated magnets which might realize such an emergent gauge theory.
Related papers
- Fate of dissipative hierarchy of timescales in the presence of unitary
dynamics [0.0]
generic behavior of purely dissipative open quantum many-body systems with local dissipation processes can be investigated using random matrix theory.
Here, we analyze how this spectrum evolves when unitary dynamics is present, both for the case of strongly and weakly dissipative dynamics.
For the physically most relevant case of (dissipative) two-body interactions, we find that the correction in the first order of the perturbation vanishes.
For weak dissipation, the spectrum flows into clusters with well-separated eigenmodes, which we identify to be the local symmetries of the Hamiltonian.
arXiv Detail & Related papers (2023-04-18T14:31:02Z) - Localization in the random XXZ quantum spin chain [55.2480439325792]
We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-$frac12$ chain in a random magnetic field.
We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a nontrivial region of the parameter space.
arXiv Detail & Related papers (2022-10-26T17:25:13Z) - Resonant energy scales and local observables in the many-body localised
phase [0.0]
We formulate a theory for resonances in the many-body localised phase of disordered quantum spin chains in terms of local observables.
Key result is to show that there are universal correlations between the matrix elements of local observables and the many-body level spectrum.
arXiv Detail & Related papers (2022-02-21T19:00:07Z) - Fano Resonances in Quantum Transport with Vibrations [50.591267188664666]
Quantum mechanical scattering continuum states coupled to a scatterer with a discrete spectrum gives rise to Fano resonances.
We consider scatterers that possess internal vibrational degrees of freedom in addition to discrete states.
arXiv Detail & Related papers (2021-08-07T12:13:59Z) - Fano interference in quantum resonances from angle-resolved elastic
scattering [62.997667081978825]
We show that probing the angular dependence of the cross section allows us to unveil asymmetric Fano profiles in a single channel shape resonance.
We observe a shift in the peak of the resonance profile in the elastic collisions between metastable helium and deuterium molecules.
arXiv Detail & Related papers (2021-05-12T20:41:25Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Resonant particle creation by a time-dependent potential in a nonlocal
theory [0.0]
We consider an exactly solvable local quantum theory of a scalar field interacting with a $delta$-shaped time-dependent potential.
We show how these considerations, when suitably generalized to a specific nonlocal "infinite-derivative" quantum theory, are impacted by the presence of nonlocality.
arXiv Detail & Related papers (2020-11-25T18:24:30Z) - Many-body localization in one dimensional optical lattice with speckle
disorder [0.0]
Many-body localization transition in speckle disorder falls within the same universality class as the transition in an uncorrelated random disorder.
Speckle potential allows one to study the role of correlations in disorder on the transition.
arXiv Detail & Related papers (2020-08-01T09:00:15Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Disorder-free localization in an interacting two-dimensional lattice
gauge theory [0.0]
Disorder-free localization has been recently introduced as a mechanism for ergodicity breaking in low-dimensional homogeneous lattice gauge theories.
We show that genuinely interacting systems in two spatial dimensions can become nonergodic as a consequence of this mechanism.
arXiv Detail & Related papers (2020-03-10T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.