論文の概要: RGB-D Salient Object Detection: A Survey
- arxiv url: http://arxiv.org/abs/2008.00230v4
- Date: Thu, 14 Jul 2022 11:47:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 00:45:19.874768
- Title: RGB-D Salient Object Detection: A Survey
- Title(参考訳): RGB-D Salient Object Detection: A Survey
- Authors: Tao Zhou, Deng-Ping Fan, Ming-Ming Cheng, Jianbing Shen, and Ling Shao
- Abstract要約: 様々な観点からRGB-Dに基づくSODモデルを総合的に調査する。
また、このドメインからSODモデルと人気のあるベンチマークデータセットもレビューします。
今後の研究に向けたRGB-DベースのSODの課題と方向性について論じる。
- 参考スコア(独自算出の注目度): 195.83586883670358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Salient object detection (SOD), which simulates the human visual perception
system to locate the most attractive object(s) in a scene, has been widely
applied to various computer vision tasks. Now, with the advent of depth
sensors, depth maps with affluent spatial information that can be beneficial in
boosting the performance of SOD, can easily be captured. Although various RGB-D
based SOD models with promising performance have been proposed over the past
several years, an in-depth understanding of these models and challenges in this
topic remains lacking. In this paper, we provide a comprehensive survey of
RGB-D based SOD models from various perspectives, and review related benchmark
datasets in detail. Further, considering that the light field can also provide
depth maps, we review SOD models and popular benchmark datasets from this
domain as well. Moreover, to investigate the SOD ability of existing models, we
carry out a comprehensive evaluation, as well as attribute-based evaluation of
several representative RGB-D based SOD models. Finally, we discuss several
challenges and open directions of RGB-D based SOD for future research. All
collected models, benchmark datasets, source code links, datasets constructed
for attribute-based evaluation, and codes for evaluation will be made publicly
available at https://github.com/taozh2017/RGBDSODsurvey
- Abstract(参考訳): シーン内の最も魅力的な物体を見つけるために人間の視覚認識システムをシミュレートするサルエント物体検出(SOD)は、様々なコンピュータビジョンタスクに広く応用されている。
これにより、深度センサの出現により、SODの性能向上に有用な豊富な空間情報を持つ深度マップを容易に取得できる。
過去数年間、様々なrgb-dベースのsodモデルが提案されてきたが、これらのモデルとこの問題に対する深い理解はいまだに欠けている。
本稿では,様々な視点からrgb-dベースのsodモデルの包括的調査を行い,関連するベンチマークデータセットを詳細に検討する。
さらに,光場が深度マップを提供することができることを考慮し,この領域からのsodモデルや人気のあるベンチマークデータセットについても検討する。
さらに,既存モデルのSOD能力を検討するため,いくつかの代表的RGB-DベースSODモデルの属性ベース評価とともに,包括的評価を行う。
最後に,RGB-D をベースとした SOD の今後の研究に向けた課題と方向性について述べる。
すべての収集されたモデル、ベンチマークデータセット、ソースコードリンク、属性ベースの評価のために構築されたデータセット、評価のためのコードはhttps://github.com/taozh2017/RGBDSODsurveyで公開されます。
関連論文リスト
- Salient Object Detection in RGB-D Videos [11.805682025734551]
本稿では,データセットとモデルという2つの主要なコントリビューションについて述べる。
現実的な深度を持つ新しいRGB-D VSODデータセットであるRDVSデータセットを構築した。
RGB-D VSODに適した3ストリームネットワークであるDCTNet+を紹介する。
論文 参考訳(メタデータ) (2023-10-24T03:18:07Z) - RBF Weighted Hyper-Involution for RGB-D Object Detection [0.0]
リアルタイムと2つのストリームRGBDオブジェクト検出モデルを提案する。
提案モデルでは, 深度誘導型ハイパーインボリューションを生深度マップの空間的相互作用パターンに基づいて動的に適応する深度誘導型ハイパーインボリューションと, アップサンプリングに基づくトレーニング可能な融合層からなる。
提案モデルは,NYU Depth v2データセットで他のRGB-Dベースオブジェクト検出モデルよりも優れており,SUN RGB-Dで比較した(第2位)結果が得られることを示す。
論文 参考訳(メタデータ) (2023-09-30T11:25:34Z) - Towards Multimodal Multitask Scene Understanding Models for Indoor
Mobile Agents [49.904531485843464]
本稿では,現実世界の屋内環境におけるラベル付きデータの不十分,あるいは不可能,といった主な課題について論じる。
MMISM (Multi-modality input Multi-task output Indoor Scene Understanding Model) について述べる。
MMISMは、RGB画像だけでなく、スパースライダーポイントを入力と3Dオブジェクト検出、深さ完了、人間のポーズ推定、セマンティックセグメンテーションを出力タスクとみなしている。
MMISMはシングルタスクモデルよりも同等かそれ以上の性能を示す。
論文 参考訳(メタデータ) (2022-09-27T04:49:19Z) - SPSN: Superpixel Prototype Sampling Network for RGB-D Salient Object
Detection [5.2134203335146925]
近年,RGB-D Salient Object Detection (SOD) が注目されている。
深層学習手法の進歩にもかかわらず、RGB-D SODは、RGB画像と深度マップと低品質深度マップとの間に大きな領域ギャップがあるため、依然として困難である。
本稿では,この問題を解決するために,新しいスーパーピクセルプロトタイプサンプリングネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-07-16T10:43:14Z) - Pyramidal Attention for Saliency Detection [30.554118525502115]
本稿では,RGB画像のみを活用し,RGBから深度を推定し,中間深度特性を利用する。
ピラミッド型アテンション構造を用いて,マルチレベル畳み込み変換器の特徴を抽出し,初期表現の処理を行う。
我々は8つのRGBおよびRGB-Dデータセット上で21と40の最先端SOD法に対する性能を著しく改善したことを報告した。
論文 参考訳(メタデータ) (2022-04-14T06:57:46Z) - RGBD Object Tracking: An In-depth Review [89.96221353160831]
まず、RGBD融合、深度利用、追跡フレームワークなど、さまざまな視点からRGBDオブジェクトトラッカーをレビューする。
我々はRGBDトラッカーの代表セットをベンチマークし、その性能に基づいて詳細な分析を行う。
論文 参考訳(メタデータ) (2022-03-26T18:53:51Z) - A Survey on RGB-D Datasets [69.73803123972297]
本稿では,深度情報を含む画像データセットをレビューし,分類した。
アクセス可能なデータを含む203のデータセットを収集し、それらをシーン/オブジェクト、ボディ、医療の3つのカテゴリに分類しました。
論文 参考訳(メタデータ) (2022-01-15T05:35:19Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Light Field Salient Object Detection: A Review and Benchmark [37.28938750278883]
本稿では,光電場SODの総合的なレビューとベンチマークを行う。
10の伝統的なモデル、7つのディープラーニングベースのモデル、1つの比較研究、1つの簡単なレビューがある。
広範に使用されている4つの光フィールドデータセット上で、9つの代表的な光フィールドSODモデルと、いくつかの最先端RGB-D SODモデルをベンチマークする。
論文 参考訳(メタデータ) (2020-10-10T10:30:40Z) - Is Depth Really Necessary for Salient Object Detection? [50.10888549190576]
本稿では,RGB情報のみを推論の入力とする統合深度認識フレームワークの実現に向けた最初の試みを行う。
5つの公開RGB SODベンチマークの最先端のパフォーマンスを上回るだけでなく、5つのベンチマークのRGBDベースのメソッドを大きく上回っている。
論文 参考訳(メタデータ) (2020-05-30T13:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。