Single ion-qubit exceeding one hour coherence time
- URL: http://arxiv.org/abs/2008.00251v1
- Date: Sat, 1 Aug 2020 11:47:07 GMT
- Title: Single ion-qubit exceeding one hour coherence time
- Authors: Pengfei Wang, Chun-Yang Luan, Mu Qiao, Mark Um, Junhua Zhang, Ye Wang,
Xiao Yuan, Mile Gu, Jingning Zhang, Kihwan Kim
- Abstract summary: Long coherence time quantum memory is a major challenge of current quantum technology.
We report a single Yb ion-qubit memory with over one hour coherence time.
- Score: 12.541642079269481
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Realizing a long coherence time quantum memory is a major challenge of
current quantum technology. Here, we report a single \Yb ion-qubit memory with
over one hour coherence time, an order of improvement compared to the
state-of-the-art record. The long coherence time memory is realized by
addressing various technical challenges such as ambient magnetic-field noise,
phase noise and leakage of the microwave oscillator. Moreover, systematically
study the decoherence process of our quantum memory by quantum process
tomography, which enables to apply the strict criteria of quantum coherence,
relative entropy of coherence. We also benchmark our quantum memory by its
ability in preserving quantum information, i.e., the robustness of quantum
memory, which clearly shows that over 6000 s, our quantum memory preserves
non-classical quantum information. Our results verify the stability of the
quantum memory in hours level and indicate its versatile applicability in
various scenarios.
Related papers
- Memory in quantum processes with indefinite time direction and causal order [0.0]
We study the emergence of dynamical memory effects in quantum processes having indefinite time direction and causal order.
We show that neither the quantum time flip nor the quantum switch could induce memory for any of the considered phase-covariant channels.
arXiv Detail & Related papers (2024-02-08T09:57:11Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - High-performance cavity-enhanced quantum memory with warm atomic cell [1.0539847330971805]
We report a high-performance cavity-enhanced electromagnetically-induced-transparency memory with warm atomic cell.
It has been experimentally demonstrated that the average fidelities for a set of input coherent states with different phases and amplitudes within a Gaussian distribution have exceeded the classical benchmark fidelities.
arXiv Detail & Related papers (2022-06-17T01:59:26Z) - The effect of quantum memory on quantum speed limit time for
CP-(in)divisible channels [0.0]
Quantum speed limit time defines the limit on the minimum time required for a quantum system to evolve between two states.
We show that the presence of quantum memory can speed up quantum evolution.
arXiv Detail & Related papers (2021-07-06T04:48:08Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - One-hour coherent optical storage in an atomic frequency comb memory [2.0902975924839917]
We demonstrate coherent storage of light in an atomic frequency comb memory over 1 hour.
This leads to a promising future for large-scale quantum communication based on long-lived solid-state quantum memories.
arXiv Detail & Related papers (2020-12-29T04:58:19Z) - Impacts of Noise and Structure on Quantum Information Encoded in a
Quantum Memory [0.6332429219530602]
We study the correlation of the structure of quantum information with physical noise models of various possible quantum memory implementations.
Our findings point to simple, experimentally relevant formulas for the relative lifetimes of quantum information in different quantum memories.
arXiv Detail & Related papers (2020-11-26T06:12:24Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.