Rule-based Bayesian regression
- URL: http://arxiv.org/abs/2008.00422v2
- Date: Fri, 8 Oct 2021 12:58:33 GMT
- Title: Rule-based Bayesian regression
- Authors: Themistoklis Botsas, Lachlan R. Mason and Indranil Pan
- Abstract summary: We introduce a novel rule-based approach for handling regression problems.
The new methodology carries elements from two frameworks: (i) it provides information about the uncertainty of the parameters of interest using Bayesian inference, and (ii) it allows the incorporation of expert knowledge through rule-based systems.
- Score: 0.90238471756546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel rule-based approach for handling regression problems.
The new methodology carries elements from two frameworks: (i) it provides
information about the uncertainty of the parameters of interest using Bayesian
inference, and (ii) it allows the incorporation of expert knowledge through
rule-based systems. The blending of those two different frameworks can be
particularly beneficial for various domains (e.g. engineering), where, even
though the significance of uncertainty quantification motivates a Bayesian
approach, there is no simple way to incorporate researcher intuition into the
model. We validate our models by applying them to synthetic applications: a
simple linear regression problem and two more complex structures based on
partial differential equations. Finally, we review the advantages of our
methodology, which include the simplicity of the implementation, the
uncertainty reduction due to the added information and, in some occasions, the
derivation of better point predictions, and we address limitations, mainly from
the computational complexity perspective, such as the difficulty in choosing an
appropriate algorithm and the added computational burden.
Related papers
- Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Efficient Alternating Minimization Solvers for Wyner Multi-View
Unsupervised Learning [0.0]
We propose two novel formulations that enable the development of computational efficient solvers based the alternating principle.
The proposed solvers offer computational efficiency, theoretical convergence guarantees, local minima complexity with the number of views, and exceptional accuracy as compared with the state-of-the-art techniques.
arXiv Detail & Related papers (2023-03-28T10:17:51Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
We discuss the key related theoretical aspects, with a particular focus on the fairness properties of primal optima and associated risk allocations.
The algorithms we provide allow for learning primals, optima for the dual representation and corresponding fair risk allocations.
arXiv Detail & Related papers (2023-02-02T22:16:49Z) - Tight Guarantees for Interactive Decision Making with the
Decision-Estimation Coefficient [51.37720227675476]
We introduce a new variant of the Decision-Estimation Coefficient, and use it to derive new lower bounds that improve upon prior work on three fronts.
We provide upper bounds on regret that scale with the same quantity, thereby closing all but one of the gaps between upper and lower bounds in Foster et al.
Our results apply to both the regret framework and PAC framework, and make use of several new analysis and algorithm design techniques that we anticipate will find broader use.
arXiv Detail & Related papers (2023-01-19T18:24:08Z) - A Novel Plug-and-Play Approach for Adversarially Robust Generalization [38.72514422694518]
We propose a robust framework that employs adversarially robust training to safeguard the ML models against perturbed testing data.
Our contributions can be seen from both computational and statistical perspectives.
arXiv Detail & Related papers (2022-08-19T17:02:55Z) - The Dynamics of Riemannian Robbins-Monro Algorithms [101.29301565229265]
We propose a family of Riemannian algorithms generalizing and extending the seminal approximation framework of Robbins and Monro.
Compared to their Euclidean counterparts, Riemannian algorithms are much less understood due to lack of a global linear structure on the manifold.
We provide a general template of almost sure convergence results that mirrors and extends the existing theory for Euclidean Robbins-Monro schemes.
arXiv Detail & Related papers (2022-06-14T12:30:11Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Parsimonious Inference [0.0]
Parsimonious inference is an information-theoretic formulation of inference over arbitrary architectures.
Our approaches combine efficient encodings with prudent sampling strategies to construct predictive ensembles without cross-validation.
arXiv Detail & Related papers (2021-03-03T04:13:14Z) - Joint learning of variational representations and solvers for inverse
problems with partially-observed data [13.984814587222811]
In this paper, we design an end-to-end framework allowing to learn actual variational frameworks for inverse problems in a supervised setting.
The variational cost and the gradient-based solver are both stated as neural networks using automatic differentiation for the latter.
This leads to a data-driven discovery of variational models.
arXiv Detail & Related papers (2020-06-05T19:53:34Z) - Sparse Methods for Automatic Relevance Determination [0.0]
We first review automatic relevance determination (ARD) and analytically demonstrate the need to additional regularization or thresholding to achieve sparse models.
We then discuss two classes of methods, regularization based and thresholding based, which build on ARD to learn parsimonious solutions to linear problems.
arXiv Detail & Related papers (2020-05-18T14:08:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.