論文の概要: Learning Agile Locomotion via Adversarial Training
- arxiv url: http://arxiv.org/abs/2008.00603v1
- Date: Mon, 3 Aug 2020 01:20:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 06:59:36.595960
- Title: Learning Agile Locomotion via Adversarial Training
- Title(参考訳): 逆行訓練によるアジャイルロコモーションの学習
- Authors: Yujin Tang, Jie Tan and Tatsuya Harada
- Abstract要約: 本稿では,四足歩行ロボット(主人公)が他のロボット(敵)を追いかけるのを学習し,後者が逃げることを学習するマルチエージェント学習システムを提案する。
この敵対的なトレーニングプロセスは、アジャイルの振る舞いを促進するだけでなく、退屈な環境設計の努力を効果的に軽減します。
1つの敵のみを使用した以前の作品とは対照的に、異なる逃走戦略を専門とする敵のアンサンブルを訓練することは、主人公がアジリティを習得するために不可欠である。
- 参考スコア(独自算出の注目度): 59.03007947334165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing controllers for agile locomotion is a long-standing challenge for
legged robots. Reinforcement learning (RL) and Evolution Strategy (ES) hold the
promise of automating the design process of such controllers. However,
dedicated and careful human effort is required to design training environments
to promote agility. In this paper, we present a multi-agent learning system, in
which a quadruped robot (protagonist) learns to chase another robot (adversary)
while the latter learns to escape. We find that this adversarial training
process not only encourages agile behaviors but also effectively alleviates the
laborious environment design effort. In contrast to prior works that used only
one adversary, we find that training an ensemble of adversaries, each of which
specializes in a different escaping strategy, is essential for the protagonist
to master agility. Through extensive experiments, we show that the locomotion
controller learned with adversarial training significantly outperforms
carefully designed baselines.
- Abstract(参考訳): アジャイルロコモーションのためのコントローラの開発は、脚のあるロボットにとって長年の課題である。
強化学習(RL)と進化戦略(ES)は、そのようなコントローラの設計プロセスを自動化することを約束している。
しかしながら、アジリティを促進するトレーニング環境を設計するには、献身的で慎重な人的努力が必要です。
本稿では,四足歩行ロボット(主人公)が他のロボット(敵)を追いかけるのを学習し,後者が逃げることを学習するマルチエージェント学習システムを提案する。
この敵対的なトレーニングプロセスは、アジャイルの振る舞いを奨励するだけでなく、環境デザインの労力を効果的に軽減する。
1つの敵のみを使った先行作品とは対照的に、異なる脱出戦略を専門とする敵のアンサンブルを訓練することは、主人公が機敏さをマスターするには不可欠である。
広い実験により, 対向訓練により学習した移動制御器は, 慎重に設計したベースラインよりも有意に優れていた。
関連論文リスト
- SoloParkour: Constrained Reinforcement Learning for Visual Locomotion from Privileged Experience [19.817578964184147]
Parkourは、足のついたロボットにとって重要な課題であり、限られた感覚入力に基づいて、俊敏性と精度で複雑な環境をナビゲートする必要がある。
本稿では,深度画素からロボット制御コマンドに至るまでのエンドツーエンドの視覚ポリシーをトレーニングし,アジャイルで安全な四足歩行を実現するための新しい手法を提案する。
本研究では,実際のSolo-12ロボットにおいて,歩行,登山,跳躍,クロールなど,さまざまなパーキングスキルを実行する能力を示す。
論文 参考訳(メタデータ) (2024-09-20T17:39:20Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - Barkour: Benchmarking Animal-level Agility with Quadruped Robots [70.97471756305463]
脚付きロボットのアジリティを定量化するための障害物コースであるBarkourベンチマークを導入する。
犬の機敏性の競争に触発され、様々な障害と時間に基づくスコアリング機構から構成される。
ベンチマークに対処する2つの方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T02:49:43Z) - Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning [26.13655448415553]
Deep Reinforcement Learning (Deep RL)は、低コストでミニチュアなヒューマノイドロボットのための洗練された安全な運動スキルを合成することができる。
我々はDeep RLを使って、20個の関節を持つヒューマノイドロボットを訓練し、1対1(1v1)のサッカーゲームを単純化した。
結果として得られるエージェントは、急激な転倒回復、歩行、回転、蹴りなど、堅牢でダイナミックな動きのスキルを示す。
論文 参考訳(メタデータ) (2023-04-26T16:25:54Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
本稿では,既存のコントローラから新しいタスクを学習するために経験を移譲することで,複雑なロボティクススキルを訓練するためのフレームワークを提案する。
提案手法は,複雑なアジャイルジャンプ行動の学習,後肢を歩いたまま目標地点への移動,新しい環境への適応を可能にする。
論文 参考訳(メタデータ) (2023-04-19T17:37:54Z) - Adaptation of Quadruped Robot Locomotion with Meta-Learning [64.71260357476602]
本研究では,多岐にわたる移動課題を解くロボットの訓練にメタ強化学習を用いることを実証する。
メタトレーニングロボットのパフォーマンスは、単一のタスクでトレーニングされたロボットと似ている。
論文 参考訳(メタデータ) (2021-07-08T10:37:18Z) - Learning Agile Robotic Locomotion Skills by Imitating Animals [72.36395376558984]
動物の多様でアジャイルな運動スキルを再現することは、ロボット工学における長年の課題である。
そこで本研究では,現実世界の動物を模倣することで,足のロボットがアジャイルな運動能力を学ぶことができる模倣学習システムを提案する。
論文 参考訳(メタデータ) (2020-04-02T02:56:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。