論文の概要: Learning and Adapting Agile Locomotion Skills by Transferring Experience
- arxiv url: http://arxiv.org/abs/2304.09834v1
- Date: Wed, 19 Apr 2023 17:37:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 13:28:43.280253
- Title: Learning and Adapting Agile Locomotion Skills by Transferring Experience
- Title(参考訳): 経験の伝達によるアジャイルロコモーションスキルの学習と適応
- Authors: Laura Smith, J. Chase Kew, Tianyu Li, Linda Luu, Xue Bin Peng, Sehoon
Ha, Jie Tan, Sergey Levine
- Abstract要約: 本稿では,既存のコントローラから新しいタスクを学習するために経験を移譲することで,複雑なロボティクススキルを訓練するためのフレームワークを提案する。
提案手法は,複雑なアジャイルジャンプ行動の学習,後肢を歩いたまま目標地点への移動,新しい環境への適応を可能にする。
- 参考スコア(独自算出の注目度): 71.8926510772552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Legged robots have enormous potential in their range of capabilities, from
navigating unstructured terrains to high-speed running. However, designing
robust controllers for highly agile dynamic motions remains a substantial
challenge for roboticists. Reinforcement learning (RL) offers a promising
data-driven approach for automatically training such controllers. However,
exploration in these high-dimensional, underactuated systems remains a
significant hurdle for enabling legged robots to learn performant,
naturalistic, and versatile agility skills. We propose a framework for training
complex robotic skills by transferring experience from existing controllers to
jumpstart learning new tasks. To leverage controllers we can acquire in
practice, we design this framework to be flexible in terms of their source --
that is, the controllers may have been optimized for a different objective
under different dynamics, or may require different knowledge of the
surroundings -- and thus may be highly suboptimal for the target task. We show
that our method enables learning complex agile jumping behaviors, navigating to
goal locations while walking on hind legs, and adapting to new environments. We
also demonstrate that the agile behaviors learned in this way are graceful and
safe enough to deploy in the real world.
- Abstract(参考訳): 脚のあるロボットは、非構造な地形の航行から高速走行まで、その能力に膨大な可能性がある。
しかし、高度にアジャイルな動的動きのためのロバストなコントローラーを設計することはロボット工学者にとって大きな課題である。
Reinforcement Learning (RL)は、そのようなコントローラを自動的にトレーニングするための有望なデータ駆動型アプローチを提供する。
しかし、これらの高次元で低機能なシステムでの探索は、脚のあるロボットがパフォーマンス、自然主義、そして多用途な俊敏性スキルを学ぶための大きなハードルである。
既存のコントローラから新しいタスクをジャンプスタートするために経験を移し、複雑なロボットスキルをトレーニングするためのフレームワークを提案する。
実際に取得できるコントローラを活用するために、我々はこのフレームワークを、ソースの観点から柔軟に設計する。つまり、コントローラは異なるダイナミクスの下で異なる目的のために最適化されたり、あるいは周囲の異なる知識を必要とするかもしれない。
提案手法は,複雑なアジャイルジャンプ行動の学習,後足歩行時の目標位置へのナビゲート,新たな環境への適応を可能にする。
また、この方法で学んだアジャイルの振る舞いは、現実世界にデプロイできるほど優雅で安全なものであることも示しています。
関連論文リスト
- Guided Decoding for Robot On-line Motion Generation and Adaption [44.959409835754634]
本稿では,ロボットアームに高い自由度を持つ新たな動作生成手法を提案する。
本研究では,実演として使用する擬似軌道の大規模データセットに基づいて,条件付き変分オートエンコーダに基づくトランスフォーマーアーキテクチャを訓練する。
本モデルでは, 異なる初期点と目標点からの運動をうまく生成し, 異なるロボットプラットフォームを横断する複雑なタスクをナビゲートする軌道を生成可能であることを示す。
論文 参考訳(メタデータ) (2024-03-22T14:32:27Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - Generalized Animal Imitator: Agile Locomotion with Versatile Motion Prior [14.114972332185044]
本稿では,様々なアジャイルロコモーションタスクを組み込んだ強化学習フレームワークであるVersatile Motion Prior (VIM)を紹介する。
本フレームワークは,動物の動作や手作業による動作を模倣することにより,多様なアジャイルの低レベルスキルを学習することを可能にする。
シミュレーション環境と実環境の両方にまたがるVIMフレームワークの評価を行った。
論文 参考訳(メタデータ) (2023-10-02T17:59:24Z) - Barkour: Benchmarking Animal-level Agility with Quadruped Robots [70.97471756305463]
脚付きロボットのアジリティを定量化するための障害物コースであるBarkourベンチマークを導入する。
犬の機敏性の競争に触発され、様々な障害と時間に基づくスコアリング機構から構成される。
ベンチマークに対処する2つの方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T02:49:43Z) - Robust and Versatile Bipedal Jumping Control through Reinforcement
Learning [141.56016556936865]
この研究は、トルク制御された二足歩行ロボットが実世界で頑丈で多目的なダイナミックジャンプを行えるようにすることで、二足歩行ロボットの機敏さの限界を推し進めることを目的としている。
本稿では,ロボットが様々な場所や方向へジャンプするなど,さまざまなジャンプタスクを達成するための強化学習フレームワークを提案する。
我々は,ロボットの長期入出力(I/O)履歴を符号化し,短期I/O履歴への直接アクセスを可能にする新しいポリシー構造を開発する。
論文 参考訳(メタデータ) (2023-02-19T01:06:09Z) - Learning Agile Locomotion via Adversarial Training [59.03007947334165]
本稿では,四足歩行ロボット(主人公)が他のロボット(敵)を追いかけるのを学習し,後者が逃げることを学習するマルチエージェント学習システムを提案する。
この敵対的なトレーニングプロセスは、アジャイルの振る舞いを促進するだけでなく、退屈な環境設計の努力を効果的に軽減します。
1つの敵のみを使用した以前の作品とは対照的に、異なる逃走戦略を専門とする敵のアンサンブルを訓練することは、主人公がアジリティを習得するために不可欠である。
論文 参考訳(メタデータ) (2020-08-03T01:20:37Z) - Learning Agile Robotic Locomotion Skills by Imitating Animals [72.36395376558984]
動物の多様でアジャイルな運動スキルを再現することは、ロボット工学における長年の課題である。
そこで本研究では,現実世界の動物を模倣することで,足のロボットがアジャイルな運動能力を学ぶことができる模倣学習システムを提案する。
論文 参考訳(メタデータ) (2020-04-02T02:56:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。