The Rate-Distortion-Accuracy Tradeoff: JPEG Case Study
- URL: http://arxiv.org/abs/2008.00605v1
- Date: Mon, 3 Aug 2020 01:39:01 GMT
- Title: The Rate-Distortion-Accuracy Tradeoff: JPEG Case Study
- Authors: Xiyang Luo, Hossein Talebi, Feng Yang, Michael Elad, Peyman Milanfar
- Abstract summary: We focus on the design of the quantization tables in the JPEG compression standard.
We offer a novel optimal tuning of these tables via continuous optimization.
We report a substantial boost in performance by a simple and easily implemented modification of these tables.
- Score: 30.84385779593074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Handling digital images is almost always accompanied by a lossy compression
in order to facilitate efficient transmission and storage. This introduces an
unavoidable tension between the allocated bit-budget (rate) and the
faithfulness of the resulting image to the original one (distortion). An
additional complicating consideration is the effect of the compression on
recognition performance by given classifiers (accuracy). This work aims to
explore this rate-distortion-accuracy tradeoff. As a case study, we focus on
the design of the quantization tables in the JPEG compression standard. We
offer a novel optimal tuning of these tables via continuous optimization,
leveraging a differential implementation of both the JPEG encoder-decoder and
an entropy estimator. This enables us to offer a unified framework that
considers the interplay between rate, distortion and classification accuracy.
In all these fronts, we report a substantial boost in performance by a simple
and easily implemented modification of these tables.
Related papers
- Once-for-All: Controllable Generative Image Compression with Dynamic Granularity Adaption [57.056311855630916]
We propose a Controllable Generative Image Compression framework, Control-GIC.
It is capable of fine-grained adaption across a broad spectrum while ensuring high-fidelity and generality compression.
We develop a conditional conditionalization that can trace back to historic encoded multi-granularity representations.
arXiv Detail & Related papers (2024-06-02T14:22:09Z) - A Rate-Distortion-Classification Approach for Lossy Image Compression [0.0]
In lossy image compression, the objective is to achieve minimal signal distortion while compressing images to a specified bit rate.
To bridge the gap between image compression and visual analysis, we propose a Rate-Distortion-Classification (RDC) model for lossy image compression.
arXiv Detail & Related papers (2024-05-06T14:11:36Z) - JDEC: JPEG Decoding via Enhanced Continuous Cosine Coefficients [17.437568540883106]
We propose a practical approach to JPEG image decoding, utilizing a local implicit neural representation with continuous cosine formulation.
Our proposed network achieves state-of-the-art performance in flexible color image JPEG artifact removal tasks.
arXiv Detail & Related papers (2024-04-03T03:28:04Z) - Progressive Learning with Visual Prompt Tuning for Variable-Rate Image
Compression [60.689646881479064]
We propose a progressive learning paradigm for transformer-based variable-rate image compression.
Inspired by visual prompt tuning, we use LPM to extract prompts for input images and hidden features at the encoder side and decoder side, respectively.
Our model outperforms all current variable image methods in terms of rate-distortion performance and approaches the state-of-the-art fixed image compression methods trained from scratch.
arXiv Detail & Related papers (2023-11-23T08:29:32Z) - High-Perceptual Quality JPEG Decoding via Posterior Sampling [13.238373528922194]
We propose a different paradigm for JPEG artifact correction.
We aim to obtain sharp, detailed and visually reconstructed images, while being consistent with the compressed input.
Our solution offers a diverse set of plausible and fast reconstructions for a given input with perfect consistency.
arXiv Detail & Related papers (2022-11-21T19:47:59Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
We describe a search-free resizing framework that can further improve the rate-distortion tradeoff of recent learned image compression models.
Our results show that our new resizing parameter estimation framework can provide Bjontegaard-Delta rate (BD-rate) improvement of about 10% against leading perceptual quality engines.
arXiv Detail & Related papers (2022-04-26T01:35:02Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Modeling Image Quantization Tradeoffs for Optimal Compression [0.0]
Lossy compression algorithms target tradeoffs by quantizating high frequency data to increase compression rates.
We propose a new method of optimizing quantization tables using Deep Learning and a minimax loss function.
arXiv Detail & Related papers (2021-12-14T07:35:22Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Countering Adversarial Examples: Combining Input Transformation and
Noisy Training [15.561916630351947]
adversarial examples pose a threat to security-sensitive image recognition task.
Traditional JPEG compression is insufficient to defend those attacks but can cause an abrupt accuracy decline to benign images.
We make modifications to traditional JPEG compression algorithm which becomes more favorable for NN.
arXiv Detail & Related papers (2021-06-25T02:46:52Z) - Learning to Improve Image Compression without Changing the Standard
Decoder [100.32492297717056]
We propose learning to improve the encoding performance with the standard decoder.
Specifically, a frequency-domain pre-editing method is proposed to optimize the distribution of DCT coefficients.
We do not modify the JPEG decoder and therefore our approach is applicable when viewing images with the widely used standard JPEG decoder.
arXiv Detail & Related papers (2020-09-27T19:24:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.