JDEC: JPEG Decoding via Enhanced Continuous Cosine Coefficients
- URL: http://arxiv.org/abs/2404.05558v1
- Date: Wed, 3 Apr 2024 03:28:04 GMT
- Title: JDEC: JPEG Decoding via Enhanced Continuous Cosine Coefficients
- Authors: Woo Kyoung Han, Sunghoon Im, Jaedeok Kim, Kyong Hwan Jin,
- Abstract summary: We propose a practical approach to JPEG image decoding, utilizing a local implicit neural representation with continuous cosine formulation.
Our proposed network achieves state-of-the-art performance in flexible color image JPEG artifact removal tasks.
- Score: 17.437568540883106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a practical approach to JPEG image decoding, utilizing a local implicit neural representation with continuous cosine formulation. The JPEG algorithm significantly quantizes discrete cosine transform (DCT) spectra to achieve a high compression rate, inevitably resulting in quality degradation while encoding an image. We have designed a continuous cosine spectrum estimator to address the quality degradation issue that restores the distorted spectrum. By leveraging local DCT formulations, our network has the privilege to exploit dequantization and upsampling simultaneously. Our proposed model enables decoding compressed images directly across different quality factors using a single pre-trained model without relying on a conventional JPEG decoder. As a result, our proposed network achieves state-of-the-art performance in flexible color image JPEG artifact removal tasks. Our source code is available at https://github.com/WooKyoungHan/JDEC.
Related papers
- Once-for-All: Controllable Generative Image Compression with Dynamic Granularity Adaption [57.056311855630916]
We propose a Controllable Generative Image Compression framework, Control-GIC.
It is capable of fine-grained adaption across a broad spectrum while ensuring high-fidelity and generality compression.
We develop a conditional conditionalization that can trace back to historic encoded multi-granularity representations.
arXiv Detail & Related papers (2024-06-02T14:22:09Z) - Learned Lossless Compression for JPEG via Frequency-Domain Prediction [50.20577108662153]
We propose a novel framework for learned lossless compression of JPEG images.
To enable learning in the frequency domain, DCT coefficients are partitioned into groups to utilize implicit local redundancy.
An autoencoder-like architecture is designed based on the weight-shared blocks to realize entropy modeling of grouped DCT coefficients.
arXiv Detail & Related papers (2023-03-05T13:15:28Z) - High-Perceptual Quality JPEG Decoding via Posterior Sampling [13.238373528922194]
We propose a different paradigm for JPEG artifact correction.
We aim to obtain sharp, detailed and visually reconstructed images, while being consistent with the compressed input.
Our solution offers a diverse set of plausible and fast reconstructions for a given input with perfect consistency.
arXiv Detail & Related papers (2022-11-21T19:47:59Z) - Learned Lossless JPEG Transcoding via Joint Lossy and Residual
Compression [21.205453851414248]
We propose a new framework to recompress the compressed JPEG image in the DCT domain.
Our proposed framework can achieve about 21.49% bits saving in average based on JPEG compression.
Our experiments on multiple datasets have demonstrated that our proposed framework can achieve about 21.49% bits saving in average based on JPEG compression.
arXiv Detail & Related papers (2022-08-24T17:12:00Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Learning to Improve Image Compression without Changing the Standard
Decoder [100.32492297717056]
We propose learning to improve the encoding performance with the standard decoder.
Specifically, a frequency-domain pre-editing method is proposed to optimize the distribution of DCT coefficients.
We do not modify the JPEG decoder and therefore our approach is applicable when viewing images with the widely used standard JPEG decoder.
arXiv Detail & Related papers (2020-09-27T19:24:42Z) - End-to-End JPEG Decoding and Artifacts Suppression Using Heterogeneous
Residual Convolutional Neural Network [0.0]
Existing deep learning models separate JPEG artifacts suppression from the decoding protocol as independent task.
We take one step forward to design a true end-to-end heterogeneous residual convolutional neural network (HR-CNN) with spectrum decomposition and heterogeneous reconstruction mechanism.
arXiv Detail & Related papers (2020-07-01T17:44:00Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z) - Quantization Guided JPEG Artifact Correction [69.04777875711646]
We develop a novel architecture for artifact correction using the JPEG files quantization matrix.
This allows our single model to achieve state-of-the-art performance over models trained for specific quality settings.
arXiv Detail & Related papers (2020-04-17T00:10:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.