Sub-Pixel Back-Projection Network For Lightweight Single Image
Super-Resolution
- URL: http://arxiv.org/abs/2008.01116v1
- Date: Mon, 3 Aug 2020 18:15:16 GMT
- Title: Sub-Pixel Back-Projection Network For Lightweight Single Image
Super-Resolution
- Authors: Supratik Banerjee, Cagri Ozcinar, Aakanksha Rana, Aljosa Smolic and
Michael Manzke
- Abstract summary: We study reducing the number of parameters and computational cost of CNN-based SISR methods.
We introduce a novel network architecture for SISR, which strikes a good trade-off between reconstruction quality and low computational complexity.
- Score: 17.751425965791718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural network (CNN)-based methods have achieved great success
for single-image superresolution (SISR). However, most models attempt to
improve reconstruction accuracy while increasing the requirement of number of
model parameters. To tackle this problem, in this paper, we study reducing the
number of parameters and computational cost of CNN-based SISR methods while
maintaining the accuracy of super-resolution reconstruction performance. To
this end, we introduce a novel network architecture for SISR, which strikes a
good trade-off between reconstruction quality and low computational complexity.
Specifically, we propose an iterative back-projection architecture using
sub-pixel convolution instead of deconvolution layers. We evaluate the
performance of computational and reconstruction accuracy for our proposed model
with extensive quantitative and qualitative evaluations. Experimental results
reveal that our proposed method uses fewer parameters and reduces the
computational cost while maintaining reconstruction accuracy against
state-of-the-art SISR methods over well-known four SR benchmark datasets. Code
is available at
"https://github.com/supratikbanerjee/SubPixel-BackProjection_SuperResolution".
Related papers
- MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multi-scale Dilated
Convolution for Image Compressive Sensing (CS) [0.0]
Compressive sensing (CS) is a technique that enables the recovery of sparse signals using fewer measurements than traditional sampling methods.
We develop an interpretable and concise neural network model for reconstructing natural images using CS.
The model, called MsDC-DEQ-Net, exhibits competitive performance compared to state-of-the-art network-based methods.
arXiv Detail & Related papers (2024-01-05T16:25:58Z) - A Lightweight Recurrent Learning Network for Sustainable Compressed
Sensing [27.964167481909588]
We propose a lightweight but effective deep neural network based on recurrent learning to achieve a sustainable CS system.
Our proposed model can achieve a better reconstruction quality than existing state-of-the-art CS algorithms.
arXiv Detail & Related papers (2023-04-23T14:54:15Z) - Learning Detail-Structure Alternative Optimization for Blind
Super-Resolution [69.11604249813304]
We propose an effective and kernel-free network, namely DSSR, which enables recurrent detail-structure alternative optimization without blur kernel prior incorporation for blind SR.
In our DSSR, a detail-structure modulation module (DSMM) is built to exploit the interaction and collaboration of image details and structures.
Our method achieves the state-of-the-art against existing methods.
arXiv Detail & Related papers (2022-12-03T14:44:17Z) - CADyQ: Content-Aware Dynamic Quantization for Image Super-Resolution [55.50793823060282]
We propose a novel Content-Aware Dynamic Quantization (CADyQ) method for image super-resolution (SR) networks.
CADyQ allocates optimal bits to local regions and layers adaptively based on the local contents of an input image.
The pipeline has been tested on various SR networks and evaluated on several standard benchmarks.
arXiv Detail & Related papers (2022-07-21T07:50:50Z) - Hybrid Pixel-Unshuffled Network for Lightweight Image Super-Resolution [64.54162195322246]
Convolutional neural network (CNN) has achieved great success on image super-resolution (SR)
Most deep CNN-based SR models take massive computations to obtain high performance.
We propose a novel Hybrid Pixel-Unshuffled Network (HPUN) by introducing an efficient and effective downsampling module into the SR task.
arXiv Detail & Related papers (2022-03-16T20:10:41Z) - Spectral Compressive Imaging Reconstruction Using Convolution and
Contextual Transformer [6.929652454131988]
We propose a hybrid network module, namely CCoT (Contextual Transformer) block, which can acquire the inductive bias ability of transformer simultaneously.
We integrate the proposed CCoT block into deep unfolding framework based on the generalized alternating projection algorithm, and further propose the GAP-CT network.
arXiv Detail & Related papers (2022-01-15T06:30:03Z) - LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single
Image Super-Resolution and Beyond [75.37541439447314]
Single image super-resolution (SISR) deals with a fundamental problem of upsampling a low-resolution (LR) image to its high-resolution (HR) version.
This paper proposes a linearly-assembled pixel-adaptive regression network (LAPAR) to strike a sweet spot of deep model complexity and resulting SISR quality.
arXiv Detail & Related papers (2021-05-21T15:47:18Z) - Deep Iterative Residual Convolutional Network for Single Image
Super-Resolution [31.934084942626257]
We propose a deep Iterative Super-Resolution Residual Convolutional Network (ISRResCNet)
It exploits the powerful image regularization and large-scale optimization techniques by training the deep network in an iterative manner with a residual learning approach.
Our method with a few trainable parameters improves the results for different scaling factors in comparison with the state-of-art methods.
arXiv Detail & Related papers (2020-09-07T12:54:14Z) - OverNet: Lightweight Multi-Scale Super-Resolution with Overscaling
Network [3.6683231417848283]
We introduce OverNet, a deep but lightweight convolutional network to solve SISR at arbitrary scale factors with a single model.
We show that our network outperforms previous state-of-the-art results in standard benchmarks while using fewer parameters than previous approaches.
arXiv Detail & Related papers (2020-08-05T22:10:29Z) - Lightweight image super-resolution with enhanced CNN [82.36883027158308]
Deep convolutional neural networks (CNNs) with strong expressive ability have achieved impressive performances on single image super-resolution (SISR)
We propose a lightweight enhanced SR CNN (LESRCNN) with three successive sub-blocks, an information extraction and enhancement block (IEEB), a reconstruction block (RB) and an information refinement block (IRB)
IEEB extracts hierarchical low-resolution (LR) features and aggregates the obtained features step-by-step to increase the memory ability of the shallow layers on deep layers for SISR.
RB converts low-frequency features into high-frequency features by fusing global
arXiv Detail & Related papers (2020-07-08T18:03:40Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.