LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single
Image Super-Resolution and Beyond
- URL: http://arxiv.org/abs/2105.10422v1
- Date: Fri, 21 May 2021 15:47:18 GMT
- Title: LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single
Image Super-Resolution and Beyond
- Authors: Wenbo Li, Kun Zhou, Lu Qi, Nianjuan Jiang, Jiangbo Lu, Jiaya Jia
- Abstract summary: Single image super-resolution (SISR) deals with a fundamental problem of upsampling a low-resolution (LR) image to its high-resolution (HR) version.
This paper proposes a linearly-assembled pixel-adaptive regression network (LAPAR) to strike a sweet spot of deep model complexity and resulting SISR quality.
- Score: 75.37541439447314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single image super-resolution (SISR) deals with a fundamental problem of
upsampling a low-resolution (LR) image to its high-resolution (HR) version.
Last few years have witnessed impressive progress propelled by deep learning
methods. However, one critical challenge faced by existing methods is to strike
a sweet spot of deep model complexity and resulting SISR quality. This paper
addresses this pain point by proposing a linearly-assembled pixel-adaptive
regression network (LAPAR), which casts the direct LR to HR mapping learning
into a linear coefficient regression task over a dictionary of multiple
predefined filter bases. Such a parametric representation renders our model
highly lightweight and easy to optimize while achieving state-of-the-art
results on SISR benchmarks. Moreover, based on the same idea, LAPAR is extended
to tackle other restoration tasks, e.g., image denoising and JPEG image
deblocking, and again, yields strong performance. The code is available at
https://github.com/dvlab-research/Simple-SR.
Related papers
- LSR: A Light-Weight Super-Resolution Method [36.14816868964436]
LSR predicts the residual image between the interpolated low-resolution (ILR) and high-resolution (HR) images using a self-supervised framework.
It consists of three modules: 1) generation of a pool of rich and diversified representations in the neighborhood of a target pixel via unsupervised learning, 2) selecting a subset from the representation pool that is most relevant to the underlying super-resolution task automatically via supervised learning, 3) predicting the residual of the target pixel via regression.
arXiv Detail & Related papers (2023-02-27T09:02:35Z) - Combining Attention Module and Pixel Shuffle for License Plate
Super-Resolution [3.8831062015253055]
This work focuses on license plate (LP) reconstruction in low-resolution and low-quality images.
We present a Single-Image Super-Resolution (SISR) approach that extends the attention/transformer module concept.
In our experiments, the proposed method outperformed the baselines both quantitatively and qualitatively.
arXiv Detail & Related papers (2022-10-30T13:05:07Z) - Real Image Super-Resolution using GAN through modeling of LR and HR
process [20.537597542144916]
We propose a learnable adaptive sinusoidal nonlinearities incorporated in LR and SR models by directly learn degradation distributions.
We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments.
arXiv Detail & Related papers (2022-10-19T09:23:37Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Deep Amended Gradient Descent for Efficient Spectral Reconstruction from
Single RGB Images [42.26124628784883]
We propose a compact, efficient, and end-to-end learning-based framework, namely AGD-Net.
We first formulate the problem explicitly based on the classic gradient descent algorithm.
AGD-Net can improve the reconstruction quality by more than 1.0 dB on average.
arXiv Detail & Related papers (2021-08-12T05:54:09Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z) - Closed-loop Matters: Dual Regression Networks for Single Image
Super-Resolution [73.86924594746884]
Deep neural networks have exhibited promising performance in image super-resolution.
These networks learn a nonlinear mapping function from low-resolution (LR) images to high-resolution (HR) images.
We propose a dual regression scheme by introducing an additional constraint on LR data to reduce the space of the possible functions.
arXiv Detail & Related papers (2020-03-16T04:23:42Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.