論文の概要: Generative Adversarial Networks for Synthesizing InSAR Patches
- arxiv url: http://arxiv.org/abs/2008.01184v1
- Date: Mon, 3 Aug 2020 20:51:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 07:22:46.922142
- Title: Generative Adversarial Networks for Synthesizing InSAR Patches
- Title(参考訳): InSARパッチの合成のためのジェネレーティブ・アドバイサル・ネットワーク
- Authors: Philipp Sibler, Yuanyuan Wang, Stefan Auer, Mohsin Ali, Xiao Xiang Zhu
- Abstract要約: GAN(Generative Adversarial Networks)は、光学的および実数値的なSAR強度画像間の画像翻訳タスクで一定の成功を収めている。
人工的複素数値InSAR画像スタックの合成は、知覚的品質に加えて、位相ノイズや位相コヒーレンスといったより厳密な品質指標を求める。
本稿では、生成CNN構造の信号処理モデルを提供し、それらの品質指標に影響を与える影響を説明し、与えられたCNN構造に対する複素数値データのマッピングスキームを示す。
- 参考スコア(独自算出の注目度): 15.260123615399035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks (GANs) have been employed with certain
success for image translation tasks between optical and real-valued SAR
intensity imagery. Applications include aiding interpretability of SAR scenes
with their optical counterparts by artificial patch generation and automatic
SAR-optical scene matching. The synthesis of artificial complex-valued InSAR
image stacks asks for, besides good perceptual quality, more stringent quality
metrics like phase noise and phase coherence. This paper provides a signal
processing model of generative CNN structures, describes effects influencing
those quality metrics and presents a mapping scheme of complex-valued data to
given CNN structures based on popular Deep Learning frameworks.
- Abstract(参考訳): GAN(Generative Adversarial Networks)は、光学的および実数値的なSAR強度画像間の画像翻訳タスクで一定の成功を収めている。
応用例としては、人工パッチ生成と自動SAR-光シーンマッチングによるSARシーンの解釈性の支援がある。
人工的複素数値InSAR画像スタックの合成は、知覚的品質に加えて、位相ノイズや位相コヒーレンスといったより厳密な品質指標を求める。
本稿では、生成CNN構造の信号処理モデルを提供し、それらの品質指標に影響を与える影響を記述し、一般的なディープラーニングフレームワークに基づく複素数値データのマッピングスキームを提案する。
関連論文リスト
- Electrooptical Image Synthesis from SAR Imagery Using Generative Adversarial Networks [0.0]
本研究は,SAR画像とEO画像のギャップを埋めることでリモートセンシングの分野に寄与する。
その結果,解釈可能性が大きく向上し,EO画像に精通したアナリストがSARデータにアクセスしやすくなった。
本研究は,SAR画像とEO画像のギャップを埋めることでリモートセンシングの分野に寄与し,データ解釈を向上するための新しいツールを提供する。
論文 参考訳(メタデータ) (2024-09-07T14:31:46Z) - Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
我々は、アップサンプリング操作から生じる一般化された構造的アーティファクトをキャプチャし、特徴付ける手段として、NPR(Neighboring Pixel Relationships)の概念を紹介した。
tft28の異なる生成モデルによって生成されたサンプルを含む、オープンワールドデータセット上で包括的な分析を行う。
この分析は、新しい最先端のパフォーマンスを確立し、既存の手法よりも優れたtft11.6%の向上を示している。
論文 参考訳(メタデータ) (2023-12-16T14:27:06Z) - SIAN: Style-Guided Instance-Adaptive Normalization for Multi-Organ
Histopathology Image Synthesis [63.845552349914186]
本研究では,異なる臓器に対して,現実的な色分布とテクスチャを合成するためのスタイル誘導型インスタンス適応正規化(SIAN)を提案する。
4つのフェーズは一緒に動作し、生成ネットワークに統合され、イメージセマンティクス、スタイル、インスタンスレベルのバウンダリを埋め込む。
論文 参考訳(メタデータ) (2022-09-02T16:45:46Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPM) は様々な画像生成タスクにおいて顕著な成功を収めた。
セマンティック画像合成に関する最近の研究は、主に「GAN(Generative Adversarial Nets)」に追従している。
論文 参考訳(メタデータ) (2022-06-30T18:31:51Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
スペックルの存在は画像品質を劣化させ、SAR画像理解アプリケーションの性能に悪影響を及ぼす。
本稿では,SAR脱種のための拡散確率モデルであるSAR-DDPMを紹介する。
提案手法は, 最先端の切り離し法と比較して, 定量化と定性化の両面で有意な改善を実現している。
論文 参考訳(メタデータ) (2022-06-09T14:00:26Z) - Comparison of convolutional neural networks for cloudy optical images
reconstruction from single or multitemporal joint SAR and optical images [0.21079694661943604]
本研究では,SARと光画像を用いた畳み込みニューラルネットワークの評価に着目する。
光画像再構成を目的としたディープネットのトレーニングのためのデータセット作成を容易にするシンプルなフレームワークを提案する。
空間分割データ構造が,クラウドカバレッジ,相対的取得日,画素の妥当性,SARと光学画像との相対的近接といった点において,サンプルのクエリにどのように役立つかを示す。
論文 参考訳(メタデータ) (2022-04-01T13:31:23Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
本稿では,SAR画像復号化のためのトランスフォーマーネットワークを提案する。
提案する非特定ネットワークは、トランスフォーマーベースのエンコーダにより、異なる画像領域間のグローバルな依存関係を学習することができる。
実験により,提案手法は従来型および畳み込み型ニューラルネットワークに基づく解法よりも大幅に改善されていることが示された。
論文 参考訳(メタデータ) (2022-01-23T20:09:01Z) - Identity-Aware CycleGAN for Face Photo-Sketch Synthesis and Recognition [61.87842307164351]
まず,画像生成ネットワークの監視に新たな知覚損失を適用したIACycleGAN(Identity-Aware CycleGAN)モデルを提案する。
眼や鼻などの重要な顔領域の合成により多くの注意を払うことで、フォトエッチング合成におけるサイクガンを改善する。
IACycleGANによる画像の合成を反復的に行う合成モデルと認識モデルとの相互最適化手法を開発した。
論文 参考訳(メタデータ) (2021-03-30T01:30:08Z) - Synthetic Glacier SAR Image Generation from Arbitrary Masks Using
Pix2Pix Algorithm [12.087729834358928]
教師あり機械学習は、適切なテスト結果を得るために大量のラベル付きデータを必要とする。
本研究では,Pix2pixアルゴリズムを用いて合成SAR画像を生成することにより,限られたトレーニングデータの問題を軽減することを提案する。
異なるモデルを示し,比較研究を行い,sar画像の説得力のある氷河を定性的・定量的に合成する手法を実証した。
論文 参考訳(メタデータ) (2021-01-08T23:30:00Z) - Improving Augmentation and Evaluation Schemes for Semantic Image
Synthesis [16.097324852253912]
本稿では,GAN(Generative Adversarial Network)に特化して設計された新しい拡張方式を提案する。
本稿では,ジェネレータへの入力として使用するセマンティックラベルマップのオブジェクト形状をランダムにワープする。
ワープされたラベルマップと非ワープされたラベルマップと画像の間の局所的な形状の相違により、GANはシーンの構造的および幾何学的詳細をよりよく学習することができる。
論文 参考訳(メタデータ) (2020-11-25T10:55:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。