論文の概要: SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models
- arxiv url: http://arxiv.org/abs/2503.12484v1
- Date: Sun, 16 Mar 2025 12:32:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:32:40.914223
- Title: SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models
- Title(参考訳): SING: Null-Space と INN-Guided Diffusion Model を用いた意味的画像通信
- Authors: Jiakang Chen, Selim F. Yilmaz, Di You, Pier Luigi Dragotti, Deniz Gündüz,
- Abstract要約: 近年, 無線画像伝送において, 共用音源チャネル符号化システム (DeepJSCC) が顕著な性能を発揮している。
既存の手法では、送信された画像とレシーバーの再構成されたバージョンとの間の歪みを最小限に抑えることに重点を置いており、しばしば知覚的品質を見落としている。
逆問題として,破損した再構成画像から高品質な画像の復元を定式化する新しいフレームワークであるSINGを提案する。
- 参考スコア(独自算出の注目度): 52.40011613324083
- License:
- Abstract: Joint source-channel coding systems based on deep neural networks (DeepJSCC) have recently demonstrated remarkable performance in wireless image transmission. Existing methods primarily focus on minimizing distortion between the transmitted image and the reconstructed version at the receiver, often overlooking perceptual quality. This can lead to severe perceptual degradation when transmitting images under extreme conditions, such as low bandwidth compression ratios (BCRs) and low signal-to-noise ratios (SNRs). In this work, we propose SING, a novel two-stage JSCC framework that formulates the recovery of high-quality source images from corrupted reconstructions as an inverse problem. Depending on the availability of information about the DeepJSCC encoder/decoder and the channel at the receiver, SING can either approximate the stochastic degradation as a linear transformation, or leverage invertible neural networks (INNs) for precise modeling. Both approaches enable the seamless integration of diffusion models into the reconstruction process, enhancing perceptual quality. Experimental results demonstrate that SING outperforms DeepJSCC and other approaches, delivering superior perceptual quality even under extremely challenging conditions, including scenarios with significant distribution mismatches between the training and test data.
- Abstract(参考訳): 近年,ディープニューラルネットワーク(DeepJSCC)をベースとしたジョイントソースチャネル符号化方式が,無線画像伝送において顕著な性能を示した。
既存の手法は主に、送信された画像とレシーバーの再構成されたバージョンの間の歪みを最小限に抑えることに重点を置いており、しばしば知覚の質を見落としている。
これは、低帯域圧縮比 (BCR) や低信号-雑音比 (SNR) などの極端な条件下で画像を送信する際に、知覚上の深刻な劣化を引き起こす可能性がある。
本研究では,2段階のJSCCフレームワークであるSINGを提案する。
DeepJSCCエンコーダ/デコーダに関する情報とレシーバのチャネルの可用性に応じて、SINGは線形変換として確率分解を近似するか、正確にモデリングするために可逆ニューラルネットワーク(INN)を利用することができる。
どちらのアプローチも、拡散モデルの再構築プロセスへのシームレスな統合を可能にし、知覚的品質を高める。
実験の結果、SINGはDeepJSCCや他の手法より優れており、トレーニングデータとテストデータの間にかなりの分布ミスマッチのあるシナリオを含む非常に困難な条件下でも優れた知覚品質を提供する。
関連論文リスト
- Diffusion-Aided Joint Source Channel Coding For High Realism Wireless Image Transmission [24.372996233209854]
DiffJSCCは条件拡散復調法により高現実性画像を生成する新しいフレームワークである。
768x512ピクセルのコダック画像を3072のシンボルで再現できる。
論文 参考訳(メタデータ) (2024-04-27T00:12:13Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - CommIN: Semantic Image Communications as an Inverse Problem with
INN-Guided Diffusion Models [20.005671042281246]
劣化した再構成画像からの高品質なソース画像の復元を逆問題とするComminを提案する。
極端条件下でのDeepJSCCと比較して,コミンは知覚品質を著しく向上させることが示された。
論文 参考訳(メタデータ) (2023-10-02T12:06:58Z) - High Perceptual Quality Wireless Image Delivery with Denoising Diffusion
Models [10.763194436114194]
深層学習を用いたジョイントソースチャネル符号化(DeepJSCC)によるノイズの多い無線チャネル上の画像伝送問題について検討する。
対象画像のレンジ・ヌル空間分解を利用した新しい手法を提案する。
再建画像の歪みと知覚的品質は,標準的なDeepJSCCや最先端の生成学習法と比較して有意に向上した。
論文 参考訳(メタデータ) (2023-09-27T16:30:59Z) - Generative Joint Source-Channel Coding for Semantic Image Transmission [29.738666406095074]
ディープニューラルネットワーク(DNN)を用いたJSCCスキームは、無線画像伝送において有望な結果をもたらす。
本稿では,無線画像伝送における深部生成モデル(DGM)の知覚品質を活用する2つの新しいJ SCC方式を提案する。
論文 参考訳(メタデータ) (2022-11-24T19:14:27Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
深部畳み込みニューラルネットワーク(Deep Convolutional Neural Network, CNN)は、正確な構造情報を自動マイニングすることで、画像の復調に使用される。
動的畳み込みブロック(DCB)、2つのカスケードウェーブレット変換および拡張ブロック(WEB)、残留ブロック(RB)の3段階を経由した、MWDCNNによるCNNの多段階化を提案する。
論文 参考訳(メタデータ) (2022-09-26T03:28:23Z) - Adaptive Information Bottleneck Guided Joint Source and Channel Coding
for Image Transmission [132.72277692192878]
画像伝送には適応情報ボトルネック(IB)誘導ジョイントソースとチャネル符号化(AIB-JSCC)が提案されている。
AIB-JSCCの目的は、画像再構成品質を改善しながら伝送速度を下げることである。
実験の結果,AIB-JSCCは送信データ量を大幅に削減し,再現性を向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-03-12T17:44:02Z) - Bandwidth-Agile Image Transmission with Deep Joint Source-Channel Coding [7.081604594416339]
画像が時間や頻度で徐々に層に伝達されるシナリオを考察する。
DeepJSCC-$l$は、畳み込みオートエンコーダを使用する革新的なソリューションである。
DeepJSCC-$l$は、低信号対雑音比(SNR)と小さな帯域幅規則の挑戦において、最先端のデジタルプログレッシブ伝送方式と同等の性能を持つ。
論文 参考訳(メタデータ) (2020-09-26T00:11:50Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
単一画像超解像(SISR)は、最近の畳み込みニューラルネットワーク(CNN)の発展により、大幅に活性化されている。
本稿では、従来のSISRアルゴリズムに関する新たな知見を提供し、反復最適化に依存するアプローチを提案する。
反復最適化の上に,新しい反復型超解像ネットワーク (ISRN) を提案する。
論文 参考訳(メタデータ) (2020-05-20T11:11:47Z) - Attention Based Real Image Restoration [48.933507352496726]
深層畳み込みニューラルネットワークは、合成劣化を含む画像に対してより良い性能を発揮する。
本稿では,新しい1段ブラインド実画像復元ネットワーク(R$2$Net)を提案する。
論文 参考訳(メタデータ) (2020-04-26T04:21:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。