論文の概要: Mixup-CAM: Weakly-supervised Semantic Segmentation via Uncertainty
Regularization
- arxiv url: http://arxiv.org/abs/2008.01201v1
- Date: Mon, 3 Aug 2020 21:19:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 06:14:09.069755
- Title: Mixup-CAM: Weakly-supervised Semantic Segmentation via Uncertainty
Regularization
- Title(参考訳): Mixup-CAM:不確かさ規則化による弱制御セマンティックセマンティックセグメンテーション
- Authors: Yu-Ting Chang, Qiaosong Wang, Wei-Chih Hung, Robinson Piramuthu,
Yi-Hsuan Tsai, Ming-Hsuan Yang
- Abstract要約: 我々は、ネットワークがオブジェクトの他の部分に注意を払うことを可能にする、原則的でエンドツーエンドのトレーニング可能なフレームワークを提案する。
具体的には、ミックスアップデータ拡張方式を分類ネットワークに導入し、2つの不確実な正規化項を設計し、ミックスアップ戦略をよりよく扱う。
- 参考スコア(独自算出の注目度): 73.03956876752868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Obtaining object response maps is one important step to achieve
weakly-supervised semantic segmentation using image-level labels. However,
existing methods rely on the classification task, which could result in a
response map only attending on discriminative object regions as the network
does not need to see the entire object for optimizing the classification loss.
To tackle this issue, we propose a principled and end-to-end train-able
framework to allow the network to pay attention to other parts of the object,
while producing a more complete and uniform response map. Specifically, we
introduce the mixup data augmentation scheme into the classification network
and design two uncertainty regularization terms to better interact with the
mixup strategy. In experiments, we conduct extensive analysis to demonstrate
the proposed method and show favorable performance against state-of-the-art
approaches.
- Abstract(参考訳): 画像レベルのラベルを用いた弱教師付きセマンティックセグメンテーションを実現するためには,オブジェクト応答マップの取得が重要なステップである。
しかし、既存の手法は分類タスクに依存しており、ネットワークが分類損失を最適化するためにオブジェクト全体を見る必要がないため、識別対象領域のみに応答マップを付けることができる。
この問題に対処するため,我々は,ネットワークが対象の他の部分に注意を払いながら,より完全かつ均一な応答マップを作成するための,原則とエンドツーエンドのトレイン可能フレームワークを提案する。
具体的には、分類ネットワークにミックスアップデータ拡張スキームを導入し、ミックスアップ戦略との対話性を高めるために、2つの不確実性正規化項を設計する。
実験では,提案手法を広範囲に分析し,最先端手法に対して良好な性能を示す。
関連論文リスト
- Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
AuxSegNet+は、サリエンシマップから豊富な情報を探索する弱教師付き補助学習フレームワークである。
また,サリエンシとセグメンテーションの特徴マップから画素レベルの親和性を学習するためのクロスタスク親和性学習機構を提案する。
論文 参考訳(メタデータ) (2024-03-02T10:03:21Z) - COMNet: Co-Occurrent Matching for Weakly Supervised Semantic
Segmentation [13.244183864948848]
我々は,CAMの品質を向上し,オブジェクトの全体に対して注意を払うためにネットワークを強制する,新しいコオカレントマッチングネットワーク(COMNet)を提案する。
具体的には、共通クラスを含むペア画像のマッチングを行い、対応する領域を強化し、単一の画像上にマッチングを構築し、対象領域を横断する意味的特徴を伝達する。
The experiment on the Pascal VOC 2012 and MS-COCO datasets shows our network can effective boost the performance of the baseline model and a new-of-the-art performance。
論文 参考訳(メタデータ) (2023-09-29T03:55:24Z) - A Unified Architecture of Semantic Segmentation and Hierarchical
Generative Adversarial Networks for Expression Manipulation [52.911307452212256]
セマンティックセグメンテーションと階層的GANの統一アーキテクチャを開発する。
我々のフレームワークのユニークな利点は、将来的なセマンティックセグメンテーションネットワーク条件を生成モデルに渡すことである。
我々は,AffectNetとRaFDの2つの難解な表情翻訳ベンチマークとセマンティックセグメンテーションベンチマークであるCelebAMask-HQについて評価を行った。
論文 参考訳(メタデータ) (2021-12-08T22:06:31Z) - SegMix: Co-occurrence Driven Mixup for Semantic Segmentation and
Adversarial Robustness [29.133980156068482]
本稿では,競合する仮説から生じる干渉を効果的に解決するために,畳み込みニューラルネットワークを訓練する戦略を提案する。
この前提は機能バインディングの概念に基づいており、ネットワーク内の層と空間にまたがるアクティベーションがうまく統合され、正しい推論決定に達するプロセスとして定義される。
論文 参考訳(メタデータ) (2021-08-23T04:35:48Z) - Learning structure-aware semantic segmentation with image-level
supervision [36.40302533324508]
CAMにおける失われた構造情報は、下流セマンティックセマンティックセグメンテーションにおけるその応用を制限すると論じる。
劣化予測をペナルティ化する補助意味境界検出モジュールを紹介します。
PASCAL-VOCデータセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2021-04-15T03:33:20Z) - Find it if You Can: End-to-End Adversarial Erasing for Weakly-Supervised
Semantic Segmentation [6.326017213490535]
本稿では,注目マップの逆消去の新たな定式化を提案する。
提案手法はサリエンシマスクを必要とせず, 注意マップの識別対象領域への拡散を防止するために, 正規化損失を用いる。
パスカルVOCデータセットを用いた実験により, 従来と比べ2.1mIoU, 1.0mIoUのセグメンテーション性能が向上することが示された。
論文 参考訳(メタデータ) (2020-11-09T18:35:35Z) - Weakly-Supervised Semantic Segmentation via Sub-category Exploration [73.03956876752868]
我々は、オブジェクトの他の部分に注意を払うために、ネットワークを強制する単純で効果的なアプローチを提案する。
具体的には、画像の特徴をクラスタリングして、アノテーション付き親クラスごとに擬似サブカテゴリラベルを生成する。
提案手法の有効性を検証し,提案手法が最先端手法に対して良好に機能することを示す。
論文 参考訳(メタデータ) (2020-08-03T20:48:31Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
2つのニューラルコアテンションを分類器に組み込んで、画像間のセマンティックな類似点と相違点をキャプチャする。
オブジェクトパターン学習の強化に加えて、コアテンションは他の関連する画像からのコンテキストを活用して、ローカライズマップの推論を改善することができる。
提案アルゴリズムは,これらすべての設定に対して新たな最先端性を設定し,その有効性と一般化性を示す。
論文 参考訳(メタデータ) (2020-07-03T21:53:46Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
弱教師付きセマンティックセグメンテーションは、トレーニングのためにピクセル単位のラベル情報が提供されないため、難しい課題である。
このようなペア関係を学習するための反復アルゴリズムを提案する。
本稿では,提案アルゴリズムが最先端手法に対して好適に動作することを示す。
論文 参考訳(メタデータ) (2020-02-19T10:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。