論文の概要: COMNet: Co-Occurrent Matching for Weakly Supervised Semantic
Segmentation
- arxiv url: http://arxiv.org/abs/2309.16959v1
- Date: Fri, 29 Sep 2023 03:55:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-02 15:38:37.862576
- Title: COMNet: Co-Occurrent Matching for Weakly Supervised Semantic
Segmentation
- Title(参考訳): COMNet: 弱修正セマンティックセグメンテーションのための同時同期マッチング
- Authors: Yukun Su, Jingliang Deng, Zonghan Li
- Abstract要約: 我々は,CAMの品質を向上し,オブジェクトの全体に対して注意を払うためにネットワークを強制する,新しいコオカレントマッチングネットワーク(COMNet)を提案する。
具体的には、共通クラスを含むペア画像のマッチングを行い、対応する領域を強化し、単一の画像上にマッチングを構築し、対象領域を横断する意味的特徴を伝達する。
The experiment on the Pascal VOC 2012 and MS-COCO datasets shows our network can effective boost the performance of the baseline model and a new-of-the-art performance。
- 参考スコア(独自算出の注目度): 13.244183864948848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-level weakly supervised semantic segmentation is a challenging task
that has been deeply studied in recent years. Most of the common solutions
exploit class activation map (CAM) to locate object regions. However, such
response maps generated by the classification network usually focus on
discriminative object parts. In this paper, we propose a novel Co-Occurrent
Matching Network (COMNet), which can promote the quality of the CAMs and
enforce the network to pay attention to the entire parts of objects.
Specifically, we perform inter-matching on paired images that contain common
classes to enhance the corresponded areas, and construct intra-matching on a
single image to propagate the semantic features across the object regions. The
experiments on the Pascal VOC 2012 and MS-COCO datasets show that our network
can effectively boost the performance of the baseline model and achieve new
state-of-the-art performance.
- Abstract(参考訳): 画像レベルの弱教師付きセマンティックセグメンテーションは近年深く研究されている課題である。
一般的なソリューションのほとんどは、クラスアクティベーションマップ(CAM)を利用してオブジェクト領域を特定する。
しかしながら、分類ネットワークによって生成されたそのような応答マップは通常、識別対象部分に焦点を当てる。
本稿では,CAMの品質を向上し,オブジェクトの全体に対して注意を払うためにネットワークを強制する,新しいコオカレントマッチングネットワーク(COMNet)を提案する。
具体的には,対応領域を拡大するための共通クラスを含むペア画像の相互マッチングを行い,対象領域にまたがる意味的特徴を伝達するために1つの画像に内部マッチングを構築する。
pascal voc 2012とms-cocoデータセットの実験では、ネットワークがベースラインモデルのパフォーマンスを効果的に向上させ、新たな最先端のパフォーマンスを達成できることが示されています。
関連論文リスト
- Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
AuxSegNet+は、サリエンシマップから豊富な情報を探索する弱教師付き補助学習フレームワークである。
また,サリエンシとセグメンテーションの特徴マップから画素レベルの親和性を学習するためのクロスタスク親和性学習機構を提案する。
論文 参考訳(メタデータ) (2024-03-02T10:03:21Z) - Weakly Supervised Semantic Segmentation by Knowledge Graph Inference [11.056545020611397]
本稿では、Wakly Supervised Semantic (WSSS)を強化するグラフ推論に基づくアプローチを提案する。
本研究の目的は,マルチラベル分類とセグメンテーションネットワークの段階を同時に拡張することで,WSSSを全体的改善することである。
PASCAL VOC 2012およびMS-COCOデータセット上でWSSSの最先端性能を達成した。
論文 参考訳(メタデータ) (2023-09-25T11:50:19Z) - CRCNet: Few-shot Segmentation with Cross-Reference and Region-Global
Conditional Networks [59.85183776573642]
少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
複数ショットセグメンテーションのためのクロスリファレンス・ローカル・グローバル・ネットワーク(CRCNet)を提案する。
我々のネットワークは、相互参照機構により、2つの画像に共起する物体をよりよく見つけることができる。
論文 参考訳(メタデータ) (2022-08-23T06:46:18Z) - Contrastive learning of Class-agnostic Activation Map for Weakly
Supervised Object Localization and Semantic Segmentation [32.76127086403596]
ラベルなし画像データを用いたクラス非依存型活性化マップ(C$2$AM)生成のためのコントラスト学習を提案する。
我々は上記の関係に基づいて正対と負の対を形成し、ネットワークを前景と背景を乱すように強制する。
ネットワークは画像前景を識別するために誘導されるため,本手法で学習したクラス非依存のアクティベーションマップは,より完全なオブジェクト領域を生成する。
論文 参考訳(メタデータ) (2022-03-25T08:46:24Z) - Cross-Image Region Mining with Region Prototypical Network for Weakly
Supervised Segmentation [45.39679291105364]
トレーニングセットのクロスイメージオブジェクトの多様性を探索する領域ネットワークRPNetを提案する。
画像にまたがる類似の物体は、地域特徴比較によって識別される。
実験の結果,提案手法はより完全で正確な擬似物体マスクを生成することがわかった。
論文 参考訳(メタデータ) (2021-08-17T02:51:02Z) - Mixup-CAM: Weakly-supervised Semantic Segmentation via Uncertainty
Regularization [73.03956876752868]
我々は、ネットワークがオブジェクトの他の部分に注意を払うことを可能にする、原則的でエンドツーエンドのトレーニング可能なフレームワークを提案する。
具体的には、ミックスアップデータ拡張方式を分類ネットワークに導入し、2つの不確実な正規化項を設計し、ミックスアップ戦略をよりよく扱う。
論文 参考訳(メタデータ) (2020-08-03T21:19:08Z) - Weakly-Supervised Semantic Segmentation via Sub-category Exploration [73.03956876752868]
我々は、オブジェクトの他の部分に注意を払うために、ネットワークを強制する単純で効果的なアプローチを提案する。
具体的には、画像の特徴をクラスタリングして、アノテーション付き親クラスごとに擬似サブカテゴリラベルを生成する。
提案手法の有効性を検証し,提案手法が最先端手法に対して良好に機能することを示す。
論文 参考訳(メタデータ) (2020-08-03T20:48:31Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
2つのニューラルコアテンションを分類器に組み込んで、画像間のセマンティックな類似点と相違点をキャプチャする。
オブジェクトパターン学習の強化に加えて、コアテンションは他の関連する画像からのコンテキストを活用して、ローカライズマップの推論を改善することができる。
提案アルゴリズムは,これらすべての設定に対して新たな最先端性を設定し,その有効性と一般化性を示す。
論文 参考訳(メタデータ) (2020-07-03T21:53:46Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
相互参照機構により、我々のネットワークは2つの画像に共起する物体をよりよく見つけることができる。
PASCAL VOC 2012データセットの実験は、我々のネットワークが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2020-03-24T04:55:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。