A gauge redundancy-free formulation of compact QED with dynamical matter
for quantum and classical computations
- URL: http://arxiv.org/abs/2008.01349v2
- Date: Mon, 14 Dec 2020 13:30:14 GMT
- Title: A gauge redundancy-free formulation of compact QED with dynamical matter
for quantum and classical computations
- Authors: Julian Bender, Erez Zohar
- Abstract summary: We introduce a way to express compact quantum electrodynamics with dynamical matter on two- and three-dimensional spatial lattices.
By transforming to a rotating frame, where the matter is decoupled from the gauge constraints, we can express the gauge field operators in terms of dual operators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a way to express compact quantum electrodynamics with dynamical
matter on two- and three-dimensional spatial lattices in a gauge
redundancy-free manner while preserving translational invariance. By
transforming to a rotating frame, where the matter is decoupled from the gauge
constraints, we can express the gauge field operators in terms of dual
operators. In two space dimensions, the dual representation is completely free
of any local constraints. In three space dimensions, local constraints among
the dual operators remain but involve only the gauge field degrees of freedom
(and not the matter degrees of freedom). These formulations, which reduce the
required Hilbert space dimension, could be useful for both numerical
(classical) Hamiltonian computations and quantum simulation or computation.
Related papers
- Quantum computation of SU(2) lattice gauge theory with continuous variables [0.0]
We present a quantum computational framework for SU(2) lattice gauge theory.
We leverage continuous variables instead of discrete qubits to represent the infinite-dimensional Hilbert space of the gauge fields.
arXiv Detail & Related papers (2024-10-18T16:29:39Z) - Strict area law entanglement versus chirality [15.809015657546915]
Chirality is a gapped phase of matter in two spatial dimensions that can be manifested through non-zero thermal or electrical Hall conductance.
We prove two no-go theorems that forbid such chirality for a quantum state in a finite dimensional local Hilbert space with strict area law entanglement entropies.
arXiv Detail & Related papers (2024-08-19T18:00:01Z) - Quantum Circuits for the heat equation with physical boundary conditions via Schrodingerisation [33.76659022113328]
This paper explores the explicit design of quantum circuits for quantum simulation of partial differential equations (PDEs) with physical boundary conditions.
We present two methods for handling the inhomogeneous terms arising from time-dependent physical boundary conditions.
We then apply the quantum simulation technique from [CJL23] to transform the resulting non-autonomous system to an autonomous system in one higher dimension.
arXiv Detail & Related papers (2024-07-22T03:52:14Z) - Low-depth unitary quantum circuits for dualities in one-dimensional
quantum lattice models [0.0]
We show how to turn dualities in (1+1)d quantum lattice models into unitary linear depth quantum circuits.
The resulting circuits can for instance be used to efficiently prepare short- and long-range entangled states.
arXiv Detail & Related papers (2023-11-02T17:53:38Z) - Dilation theorem via Schr\"odingerisation, with applications to the
quantum simulation of differential equations [29.171574903651283]
Nagy's unitary dilation theorem in operator theory asserts the possibility of dilating a contraction into a unitary operator.
In this study, we demonstrate the viability of the recently devised Schr"odingerisation approach.
arXiv Detail & Related papers (2023-09-28T08:55:43Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Ternary unitary quantum lattice models and circuits in $2 + 1$
dimensions [0.0]
We extend the concept of dual unitary quantum gates to quantum lattice models in $2 + 1$ dimensions.
We study ternary unitary four-particle gates, which are unitary in time and both spatial dimensions.
arXiv Detail & Related papers (2022-06-03T10:53:49Z) - Unified Formulation of Phase Space Mapping Approaches for Nonadiabatic
Quantum Dynamics [17.514476953380125]
Nonadiabatic dynamical processes are important quantum mechanical phenomena in chemical, materials, biological, and environmental molecular systems.
The mapping Hamiltonian on phase space coupled F-state systems is a special case.
An isomorphism between the mapping phase space approach for nonadiabatic systems and that for nonequilibrium electron transport processes is presented.
arXiv Detail & Related papers (2022-05-23T14:40:22Z) - Quantum transport and localization in 1d and 2d tight-binding lattices [39.26291658500249]
Particle transport and localization phenomena in condensed-matter systems can be modeled using a tight-binding lattice Hamiltonian.
Here, we experimentally study quantum transport in one-dimensional and two-dimensional tight-binding lattices, emulated by a fully controllable $3 times 3$ array of superconducting qubits.
arXiv Detail & Related papers (2021-07-11T12:36:12Z) - A Trailhead for Quantum Simulation of SU(3) Yang-Mills Lattice Gauge
Theory in the Local Multiplet Basis [0.0]
Reformulations of the gauge fields can modify the ratio of physical to gauge-variant states.
This paper considers the implications of representing SU(3) Yang-Mills gauge theory on a lattice of irreducible representations.
arXiv Detail & Related papers (2021-01-25T16:41:56Z) - Fermionic and bosonic quantum field theories from quantum cellular
automata in three spatial dimensions [0.0]
We construct quantum cellular automata for distinguishable particles based on two different quantum walks.
We show that by restricting to the antisymmetric and symmetric subspaces, respectively, a multiparticle theory for free fermions and bosons in three spatial dimensions can be produced.
arXiv Detail & Related papers (2020-11-11T06:57:14Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.