論文の概要: Deep Parallel MRI Reconstruction Network Without Coil Sensitivities
- arxiv url: http://arxiv.org/abs/2008.01410v3
- Date: Tue, 18 Aug 2020 15:03:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 00:59:28.679978
- Title: Deep Parallel MRI Reconstruction Network Without Coil Sensitivities
- Title(参考訳): コイル感度のない深層並列MRI再構成ネットワーク
- Authors: Wanyu Bian, Yunmei Chen, Xiaojing Ye
- Abstract要約: 並列MRI(pMRI)における高速画像再構成のための頑健な近位勾配スキームをデータからトレーニングした正規化関数にマッピングすることにより,新しいディープニューラルネットワークアーキテクチャを提案する。
提案するネットワークは,不完全なpMRIデータからのマルチコイル画像と均一なコントラストとを適応的に組み合わせることを学び,非線形エンコーダに渡されて画像のスパース特徴を効率的に抽出する。
- 参考スコア(独自算出の注目度): 4.559089047554929
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel deep neural network architecture by mapping the robust
proximal gradient scheme for fast image reconstruction in parallel MRI (pMRI)
with regularization function trained from data. The proposed network learns to
adaptively combine the multi-coil images from incomplete pMRI data into a
single image with homogeneous contrast, which is then passed to a nonlinear
encoder to efficiently extract sparse features of the image. Unlike most of
existing deep image reconstruction networks, our network does not require
knowledge of sensitivity maps, which can be difficult to estimate accurately,
and have been a major bottleneck of image reconstruction in real-world pMRI
applications. The experimental results demonstrate the promising performance of
our method on a variety of pMRI imaging data sets.
- Abstract(参考訳): 並列MRI(pMRI)における高速画像再構成のための頑健な近位勾配スキームをデータからトレーニングした正規化関数にマッピングすることにより,新しいディープニューラルネットワークアーキテクチャを提案する。
提案するネットワークは,不完全なpMRIデータからのマルチコイル画像と均一なコントラストとを適応的に組み合わせることを学び,非線形エンコーダに渡されて画像のスパース特徴を効率的に抽出する。
既存の深層画像再構成ネットワークと異なり,感度マップの知識は不要であり,正確な推定は困難であり,実世界のpmriアプリケーションでは画像再構成の大きなボトルネックとなっている。
実験の結果,様々なpMRI画像データセットにおいて,本手法が期待できる性能を示した。
関連論文リスト
- CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - Attention Hybrid Variational Net for Accelerated MRI Reconstruction [7.046523233290946]
磁気共鳴画像(MRI)の高速化のための圧縮センシング(CS)対応データ再構成の適用は依然として難しい問題である。
これは、加速マスクからk空間で失った情報が、完全にサンプリングされた画像の質に似た画像の再構成を困難にしているためである。
我々は,k空間と画像領域の両方で学習を行う,深層学習に基づく注目ハイブリッド変分ネットワークを提案する。
論文 参考訳(メタデータ) (2023-06-21T16:19:07Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions [0.688204255655161]
加速MRIの一般的なアプローチは、k空間データをアンサンプすることである。
アンサンプはスキャン手順を高速化する一方で、画像内のアーティファクトを生成し、アーティファクトのない画像を生成するために高度な再構築アルゴリズムが必要である。
本研究では、新しい進化的ニューラルネットワーク探索アルゴリズムを用いて、最適化されたニューラルネットワークを用いて、アンダーサンプルデータからのMRI再構成を行った。
論文 参考訳(メタデータ) (2022-06-15T03:42:18Z) - Scale-Equivariant Unrolled Neural Networks for Data-Efficient
Accelerated MRI Reconstruction [33.82162420709648]
本稿では,大規模同変畳み込みニューラルネットワークを用いたニューラルネットワークの近位演算子をモデル化する。
我々のアプローチは、同じメモリ制約下での最先端のアンロールニューラルネットワークに対する強力な改善を示す。
論文 参考訳(メタデータ) (2022-04-21T23:29:52Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
臨床実践では、複数のコントラストを持つMRIが1つの研究で取得されるのが普通である。
近年の研究では、異なるコントラストやモダリティの冗長性を考慮すると、k空間にアンダーサンプリングされたMRIの目標モダリティは、完全にサンプリングされたシーケンスの助けを借りてよりよく再構成できることが示されている。
本稿では,空間アライメントネットワークと再構成を統合し,再構成対象のモダリティの質を向上させる。
論文 参考訳(メタデータ) (2021-08-12T08:46:35Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - ODE-based Deep Network for MRI Reconstruction [1.569044447685249]
画像品質を向上したMR画像の高速取得を実現するために,MRI再構成のためのODEベースのディープネットワークを提案する。
提案手法は, 標準UNetネットワークとResidualネットワークをベースとした再構成手法と比較して, 高品質な画像を提供できることを示す。
論文 参考訳(メタデータ) (2019-12-27T20:13:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。