論文の概要: ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions
- arxiv url: http://arxiv.org/abs/2206.07280v1
- Date: Wed, 15 Jun 2022 03:42:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-16 15:10:54.753977
- Title: ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions
- Title(参考訳): ernas:磁気共鳴画像再構成のための進化的ニューラルアーキテクチャ探索
- Authors: Samira Vafay Eslahi, Jian Tao, and Jim Ji
- Abstract要約: 加速MRIの一般的なアプローチは、k空間データをアンサンプすることである。
アンサンプはスキャン手順を高速化する一方で、画像内のアーティファクトを生成し、アーティファクトのない画像を生成するために高度な再構築アルゴリズムが必要である。
本研究では、新しい進化的ニューラルネットワーク探索アルゴリズムを用いて、最適化されたニューラルネットワークを用いて、アンダーサンプルデータからのMRI再構成を行った。
- 参考スコア(独自算出の注目度): 0.688204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging (MRI) is one of the noninvasive imaging modalities
that can produce high-quality images. However, the scan procedure is relatively
slow, which causes patient discomfort and motion artifacts in images.
Accelerating MRI hardware is constrained by physical and physiological
limitations. A popular alternative approach to accelerated MRI is to
undersample the k-space data. While undersampling speeds up the scan procedure,
it generates artifacts in the images, and advanced reconstruction algorithms
are needed to produce artifact-free images. Recently deep learning has emerged
as a promising MRI reconstruction method to address this problem. However,
straightforward adoption of the existing deep learning neural network
architectures in MRI reconstructions is not usually optimal in terms of
efficiency and reconstruction quality. In this work, MRI reconstruction from
undersampled data was carried out using an optimized neural network using a
novel evolutionary neural architecture search algorithm. Brain and knee MRI
datasets show that the proposed algorithm outperforms manually designed neural
network-based MR reconstruction models.
- Abstract(参考訳): 磁気共鳴イメージング(MRI)は、高品質な画像を生成する非侵襲的な画像モダリティの1つである。
しかし、スキャン手順は比較的遅いため、画像中の患者の不快感や運動アーチファクトを引き起こす。
MRIハードウェアの加速は、物理的および生理的制限によって制限される。
加速MRIの一般的な代替手法は、k空間データをアンサンプすることである。
アンサンプリングはスキャン手順を高速化するが、画像内のアーティファクトを生成し、アーティファクトフリーな画像を生成するには高度な再構築アルゴリズムが必要である。
近年,この問題を解決するためのMRI再構成手法としてディープラーニングが登場している。
しかし、MRI再構成における既存のディープラーニングニューラルネットワークアーキテクチャの直接的な採用は通常、効率と再構築品質の点で最適ではない。
本研究では,新しい進化的ニューラルネットワーク探索アルゴリズムを用いて,アンダーサンプルデータからのMRI再構成を行った。
脳と膝のMRIデータセットは、提案アルゴリズムが手動で設計されたニューラルネットワークベースのMR再構成モデルより優れていることを示している。
関連論文リスト
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
圧縮センシングMRI(Compressed Sensing MRI)は、身体の内部解剖像をアンダーサンプルと圧縮された測定値から再構成する。
ディープニューラルネットワークは、高度にアンサンプされた測定結果から高品質なイメージを再構築する大きな可能性を示している。
CS-MRIにおけるサブサンプリングパターンや画像解像度に頑健な統一モデルを提案する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - MambaRecon: MRI Reconstruction with Structured State Space Models [30.506544165999564]
ディープラーニングの出現は、MRIスキャンの迅速な再構築のための最先端の手法の開発を触媒している。
本稿では,長期的文脈感度と再構成の有効性の両立を目的とした,構造化状態空間モデルをコアに採用した革新的なMRI再構成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-19T01:50:10Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - A scan-specific unsupervised method for parallel MRI reconstruction via
implicit neural representation [9.388253054229155]
暗黙的神経表現(INR)は、物体の内部連続性を学ぶための新しいディープラーニングパラダイムとして登場した。
提案手法は,アーティファクトやノイズのエイリアスを抑えることにより,既存の手法よりも優れる。
良質な結果と走査特異性により,提案手法は並列MRIのデータ取得をさらに加速させる可能性を秘めている。
論文 参考訳(メタデータ) (2022-10-19T10:16:03Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Recurrent Variational Network: A Deep Learning Inverse Problem Solver
applied to the task of Accelerated MRI Reconstruction [3.058685580689605]
本稿では,MRIの高速化作業に応用した,ディープラーニングに基づく逆問題解法を提案する。
RecurrentVarNetは複数のブロックから構成されており、それぞれが逆問題を解決するための勾配降下アルゴリズムの1つのアンロール反復に責任を負っている。
提案手法は,公共のマルチチャネル脳データセットから得られた5倍および10倍の加速データに対して,定性的かつ定量的な再構築結果の新たな状態を実現する。
論文 参考訳(メタデータ) (2021-11-18T11:44:04Z) - Generative Adversarial Networks (GAN) Powered Fast Magnetic Resonance
Imaging -- Mini Review, Comparison and Perspectives [5.3148259096171175]
MRIの欠点の1つは、他の画像モダリティに比べて比較的遅いスキャンと再構成である。
ディープニューラルネットワーク(DNN)は、比較的高品質な画像を再現するスパースMRI再構成モデルに使われてきた。
画像の知覚品質を向上した高速MRIを実現するために,GAN(Generative Adversarial Networks)に基づく手法を提案する。
論文 参考訳(メタデータ) (2021-05-04T23:59:00Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Fine-grained MRI Reconstruction using Attentive Selection Generative
Adversarial Networks [0.0]
高品質mri再構成を実現するための新しい注意に基づく深層学習フレームワークを提案する。
我々は,gan(generative adversarial network)フレームワークに大規模文脈的特徴統合と注意選択を組み込んだ。
論文 参考訳(メタデータ) (2021-03-13T09:58:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。