Predicting Multiple ICD-10 Codes from Brazilian-Portuguese Clinical
Notes
- URL: http://arxiv.org/abs/2008.01515v1
- Date: Wed, 29 Jul 2020 22:12:26 GMT
- Title: Predicting Multiple ICD-10 Codes from Brazilian-Portuguese Clinical
Notes
- Authors: Arthur D. Reys, Danilo Silva, Daniel Severo, Saulo Pedro, Marcia M. de
Souza e S\'a, Guilherme A. C. Salgado
- Abstract summary: We develop and optimize a Logistic Regression model, a Convolutional Neural Network (CNN), a Gated Recurrent Unit Neural Network and a CNN with Attention for prediction of diagnosis ICD codes.
Compared to MIMIC-III, the Brazilian Portuguese dataset contains far fewer words per document, when only discharge summaries are used.
The CNN-Att model achieves the best results on both datasets, with micro-averaged F1 score of 0.537 on MIMIC-III and 0.485 on our dataset with additional documents.
- Score: 4.971638713979981
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: ICD coding from electronic clinical records is a manual, time-consuming and
expensive process. Code assignment is, however, an important task for billing
purposes and database organization. While many works have studied the problem
of automated ICD coding from free text using machine learning techniques, most
use records in the English language, especially from the MIMIC-III public
dataset. This work presents results for a dataset with Brazilian Portuguese
clinical notes. We develop and optimize a Logistic Regression model, a
Convolutional Neural Network (CNN), a Gated Recurrent Unit Neural Network and a
CNN with Attention (CNN-Att) for prediction of diagnosis ICD codes. We also
report our results for the MIMIC-III dataset, which outperform previous work
among models of the same families, as well as the state of the art. Compared to
MIMIC-III, the Brazilian Portuguese dataset contains far fewer words per
document, when only discharge summaries are used. We experiment concatenating
additional documents available in this dataset, achieving a great boost in
performance. The CNN-Att model achieves the best results on both datasets, with
micro-averaged F1 score of 0.537 on MIMIC-III and 0.485 on our dataset with
additional documents.
Related papers
- Improving ICD coding using Chapter based Named Entities and Attentional Models [0.0]
We introduce an enhanced approach to ICD coding that improves F1 scores by using chapter-based named entities and attentional models.
This method categorizes discharge summaries into ICD-9 Chapters and develops attentional models with chapter-specific data.
For categorization, we use Chapter-IV to de-bias and influence key entities and weights without neural networks.
arXiv Detail & Related papers (2024-07-24T12:34:23Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - An Open Dataset and Model for Language Identification [84.15194457400253]
We present a LID model which achieves a macro-average F1 score of 0.93 and a false positive rate of 0.033 across 201 languages.
We make both the model and the dataset available to the research community.
arXiv Detail & Related papers (2023-05-23T08:43:42Z) - Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review
and Replicability Study [60.56194508762205]
We reproduce, compare, and analyze state-of-the-art automated medical coding machine learning models.
We show that several models underperform due to weak configurations, poorly sampled train-test splits, and insufficient evaluation.
We present the first comprehensive results on the newly released MIMIC-IV dataset using the reproduced models.
arXiv Detail & Related papers (2023-04-21T11:54:44Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
A problem that frequently occurs when working with a non-English language is the scarcity of annotated training data.
We design a simple but effective ensemble-based framework that combines various transfer learning techniques.
We also propose a low-cost TL method that bootstraps coreference resolution models by utilizing Wikipedia anchor texts.
arXiv Detail & Related papers (2023-01-22T18:22:55Z) - Multi-label Few-shot ICD Coding as Autoregressive Generation with Prompt [7.554528566861559]
This study transforms this multi-label classification task into an autoregressive generation task.
Instead of directly predicting the high dimensional space of ICD codes, our model generates the lower dimension of text descriptions.
Experiments on MIMIC-III-few show that our model performs with a marco F1 30.2, which substantially outperforms the previous MIMIC-III-full SOTA model.
arXiv Detail & Related papers (2022-11-24T22:10:50Z) - Hierarchical Label-wise Attention Transformer Model for Explainable ICD
Coding [10.387366211090734]
We propose a hierarchical label-wise attention Transformer model (HiLAT) for the explainable prediction of ICD codes from clinical documents.
We evaluate HiLAT using hospital discharge summaries and their corresponding ICD-9 codes from the MIMIC-III database.
Visualisations of attention weights present a potential explainability tool for checking the face validity of ICD code predictions.
arXiv Detail & Related papers (2022-04-22T14:12:22Z) - ICDBigBird: A Contextual Embedding Model for ICD Code Classification [71.58299917476195]
Contextual word embedding models have achieved state-of-the-art results in multiple NLP tasks.
ICDBigBird is a BigBird-based model which can integrate a Graph Convolutional Network (GCN)
Our experiments on a real-world clinical dataset demonstrate the effectiveness of our BigBird-based model on the ICD classification task.
arXiv Detail & Related papers (2022-04-21T20:59:56Z) - Secondary Use of Clinical Problem List Entries for Neural Network-Based
Disease Code Assignment [1.3190581566723918]
We explore automated coding of 50 character long clinical problem list entries using the International Classification of Diseases (ICD-10)
A fastText baseline reached a macro-averaged F1-score of 0.83, followed by a character-level LSTM with a macro-averaged F1-score of 0.84.
A neural network activation analysis together with an investigation of the false positives and false negatives unveiled inconsistent manual coding as a main limiting factor.
arXiv Detail & Related papers (2021-12-27T16:11:05Z) - Data Augmentation for Abstractive Query-Focused Multi-Document
Summarization [129.96147867496205]
We present two QMDS training datasets, which we construct using two data augmentation methods.
These two datasets have complementary properties, i.e., QMDSCNN has real summaries but queries are simulated, while QMDSIR has real queries but simulated summaries.
We build end-to-end neural network models on the combined datasets that yield new state-of-the-art transfer results on DUC datasets.
arXiv Detail & Related papers (2021-03-02T16:57:01Z) - An Explainable CNN Approach for Medical Codes Prediction from Clinical
Text [1.7746314978241657]
We develop CNN-based methods for automatic ICD coding based on clinical text from intensive care unit (ICU) stays.
We come up with the Shallow and Wide Attention convolutional Mechanism (SWAM), which allows our model to learn local and low-level features for each label.
arXiv Detail & Related papers (2021-01-14T02:05:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.