Adaptive Physics-Informed Neural Networks for Markov-Chain Monte Carlo
- URL: http://arxiv.org/abs/2008.01604v1
- Date: Mon, 3 Aug 2020 15:25:10 GMT
- Title: Adaptive Physics-Informed Neural Networks for Markov-Chain Monte Carlo
- Authors: Mohammad Amin Nabian, Hadi Meidani
- Abstract summary: We focus on a class of parameter estimation problems for which computing the likelihood function requires solving a PDE.
The proposed method consists of: (1) constructing an offline PINN-UQ model as an approximation to the forward model; and (2) refining this approximate model on the fly using samples generated from the MCMC sampler.
We numerically demonstrate the performance of the proposed APINN method in solving a parameter estimation problem for a system governed by the Poisson equation.
- Score: 2.741266294612776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose the Adaptive Physics-Informed Neural Networks
(APINNs) for accurate and efficient simulation-free Bayesian parameter
estimation via Markov-Chain Monte Carlo (MCMC). We specifically focus on a
class of parameter estimation problems for which computing the likelihood
function requires solving a PDE. The proposed method consists of: (1)
constructing an offline PINN-UQ model as an approximation to the forward model;
and (2) refining this approximate model on the fly using samples generated from
the MCMC sampler. The proposed APINN method constantly refines this approximate
model on the fly and guarantees that the approximation error is always less
than a user-defined residual error threshold. We numerically demonstrate the
performance of the proposed APINN method in solving a parameter estimation
problem for a system governed by the Poisson equation.
Related papers
- Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Direct Estimation of Parameters in ODE Models Using WENDy: Weak-form
Estimation of Nonlinear Dynamics [0.0]
We introduce the Weak-form Estimation of Dynamics (WENDy) method for estimating model parameters for non-linear systems of ODEs.
WENDy computes accurate estimates and is robust to large (biologically relevant) levels of measurement noise.
We demonstrate the high robustness and computational efficiency by applying WENDy to estimate parameters in some common models from population biology, neuroscience, and biochemistry.
arXiv Detail & Related papers (2023-02-26T08:49:34Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Deep Learning Aided Laplace Based Bayesian Inference for Epidemiological
Systems [2.596903831934905]
We propose a hybrid approach where Laplace-based Bayesian inference is combined with an ANN architecture for obtaining approximations to the ODE trajectories.
The effectiveness of our proposed methods is demonstrated using an epidemiological system with non-analytical solutions, the Susceptible-Infectious-Removed (SIR) model for infectious diseases.
arXiv Detail & Related papers (2022-10-17T09:02:41Z) - Scalable Stochastic Parametric Verification with Stochastic Variational
Smoothed Model Checking [1.5293427903448025]
Smoothed model checking (smMC) aims at inferring the satisfaction function over the entire parameter space from a limited set of observations.
In this paper, we exploit recent advances in probabilistic machine learning to push this limitation forward.
We compare the performances of smMC against those of SV-smMC by looking at the scalability, the computational efficiency and the accuracy of the reconstructed satisfaction function.
arXiv Detail & Related papers (2022-05-11T10:43:23Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
We present a physics-constrained deep neural network (PCDNN) method for parameter estimation in the zero-dimensional (0D) model of the vanadium flow battery (VRFB)
We show that the PCDNN method can estimate model parameters for a range of operating conditions and improve the 0D model prediction of voltage.
We also demonstrate that the PCDNN approach has an improved generalization ability for estimating parameter values for operating conditions not used in the training.
arXiv Detail & Related papers (2021-06-21T23:42:58Z) - Generative Network-Based Reduced-Order Model for Prediction, Data
Assimilation and Uncertainty Quantification [0.0]
We propose a new method in which a generative network (GN) integrate into a reduced-order model (ROM) framework.
The aim is to match available measurements and estimate the corresponding uncertainties associated with the states and parameters of a physical simulation.
arXiv Detail & Related papers (2021-05-28T14:12:45Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.