Integrated Traffic Simulation-Prediction System using Neural Networks
with Application to the Los Angeles International Airport Road Network
- URL: http://arxiv.org/abs/2008.01902v1
- Date: Wed, 5 Aug 2020 01:41:10 GMT
- Title: Integrated Traffic Simulation-Prediction System using Neural Networks
with Application to the Los Angeles International Airport Road Network
- Authors: Yihang Zhang, Aristotelis-Angelos Papadopoulos, Pengfei Chen, Faisal
Alasiri, Tianchen Yuan, Jin Zhou, Petros A. Ioannou
- Abstract summary: The proposed system includes an optimization-based OD matrix generation method, a Neural Network (NN) model trained to predict OD matrices via the pattern of traffic flow and a microscopic traffic simulator.
We test the proposed system on the road network of the central terminal area (CTA) of the Los Angeles International Airport (LAX)
- Score: 39.975268616636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transportation networks are highly complex and the design of efficient
traffic management systems is difficult due to lack of adequate measured data
and accurate predictions of the traffic states. Traffic simulation models can
capture the complex dynamics of transportation networks by using limited
available traffic data and can help central traffic authorities in their
decision-making, if appropriate input is fed into the simulator. In this paper,
we design an integrated simulation-prediction system which estimates the
Origin-Destination (OD) matrix of a road network using only flow rate
information and predicts the behavior of the road network in different
simulation scenarios. The proposed system includes an optimization-based OD
matrix generation method, a Neural Network (NN) model trained to predict OD
matrices via the pattern of traffic flow and a microscopic traffic simulator
with a Dynamic Traffic Assignment (DTA) scheme to predict the behavior of the
transportation system. We test the proposed system on the road network of the
central terminal area (CTA) of the Los Angeles International Airport (LAX),
which demonstrates that the integrated traffic simulation-prediction system can
be used to simulate the effects of several real world scenarios such as lane
closures, curbside parking and other changes. The model is an effective tool
for learning the impact and possible benefits of changes in the network and for
analyzing scenarios at a very low cost without disrupting the network.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - RACH Traffic Prediction in Massive Machine Type Communications [5.416701003120508]
This paper presents a machine learning-based framework tailored for forecasting bursty traffic in ALOHA networks.
We develop a new low-complexity online prediction algorithm that updates the states of the LSTM network by leveraging frequently collected data from the mMTC network.
We evaluate the performance of the proposed framework in a network with a single base station and thousands of devices organized into groups with distinct traffic-generating characteristics.
arXiv Detail & Related papers (2024-05-08T17:28:07Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Leveraging Neo4j and deep learning for traffic congestion simulation &
optimization [0.0]
We show how traffic propagates backward in case of congestion or accident scenarios and its overall impact on other segments of the roads.
We also train a sequential RNN-LSTM (Long Short-Term Memory) deep learning model on the real-time traffic data to assess the accuracy of simulation results based on a road-specific congestion.
arXiv Detail & Related papers (2023-04-01T01:23:10Z) - Traffic Volume Prediction using Memory-Based Recurrent Neural Networks:
A comparative analysis of LSTM and GRU [5.320087179174425]
We develop non-linear memory-based deep neural network models to forecast traffic volume in real-time.
Our experiments demonstrate the effectiveness of the proposed models in predicting traffic volume in highly dynamic and heterogeneous traffic environments.
arXiv Detail & Related papers (2023-03-22T15:25:07Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Modeling Network-level Traffic Flow Transitions on Sparse Data [6.756998301171409]
We present DTIGNN, an approach that can predict network-level traffic flows from sparse data.
We demonstrate that our method outperforms state-of-the-art methods and can better support decision-making in transportation.
arXiv Detail & Related papers (2022-08-13T13:30:35Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Data-Driven Traffic Assignment: A Novel Approach for Learning Traffic
Flow Patterns Using a Graph Convolutional Neural Network [1.3706331473063877]
We present a novel data-driven approach of learning traffic flow patterns of a transportation network.
We develop a neural network-based framework known as Graph Convolutional Neural Network (GCNN) to solve it.
When the training of the model is complete, it can instantly determine the traffic flows of a large-scale network.
arXiv Detail & Related papers (2022-02-21T19:45:15Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.