論文の概要: Multiple Texts as a Limiting Factor in Online Learning: Quantifying
(Dis-)similarities of Knowledge Networks across Languages
- arxiv url: http://arxiv.org/abs/2008.02047v1
- Date: Wed, 5 Aug 2020 11:11:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-02 18:12:24.718774
- Title: Multiple Texts as a Limiting Factor in Online Learning: Quantifying
(Dis-)similarities of Knowledge Networks across Languages
- Title(参考訳): オンライン学習における制限要因としての複数テキスト--言語間の知識ネットワークの定量化(非類似性)
- Authors: Alexander Mehler and Wahed Hemati and Pascal Welke and Maxim Konca and
Tolga Uslu
- Abstract要約: ウィキペディアを通して、ある話題に関する情報を入手する程度が、相談される言語に依存するという仮説を考察する。
ウィキペディアはウェブベースの情報ランドスケープの中心的な部分であるため、言語に関する言語的偏見を示している。
この論文は、研究、教育科学、ウィキペディア研究、計算言語学の橋渡しとなっている。
- 参考スコア(独自算出の注目度): 60.00219873112454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We test the hypothesis that the extent to which one obtains information on a
given topic through Wikipedia depends on the language in which it is consulted.
Controlling the size factor, we investigate this hypothesis for a number of 25
subject areas. Since Wikipedia is a central part of the web-based information
landscape, this indicates a language-related, linguistic bias. The article
therefore deals with the question of whether Wikipedia exhibits this kind of
linguistic relativity or not. From the perspective of educational science, the
article develops a computational model of the information landscape from which
multiple texts are drawn as typical input of web-based reading. For this
purpose, it develops a hybrid model of intra- and intertextual similarity of
different parts of the information landscape and tests this model on the
example of 35 languages and corresponding Wikipedias. In this way the article
builds a bridge between reading research, educational science, Wikipedia
research and computational linguistics.
- Abstract(参考訳): 我々は、ウィキペディアを通じて、あるトピックに関する情報を得る範囲が、相談される言語に依存するという仮説を検証した。
サイズ因子を制御し,25個の対象領域についてこの仮説を検証した。
ウィキペディアはウェブベースの情報ランドスケープの中心的な部分であるため、言語に関する言語的偏見を示している。
この論文は、ウィキペディアがこの種の言語的相対性を示すかどうかという問題を扱う。
教育科学の観点から、本論文は、webベースの読書の典型的入力として複数のテキストを描画する情報景観の計算モデルを開発した。
この目的のために、情報ランドスケープの異なる部分のテキスト内およびテクスチャ間類似性のハイブリッドモデルを開発し、35の言語と対応するウィキペディアの例でこのモデルを検証した。
このように、この記事は読書研究、教育科学、ウィキペディア研究、計算言語学の橋渡しとなる。
関連論文リスト
- Locating Information Gaps and Narrative Inconsistencies Across Languages: A Case Study of LGBT People Portrayals on Wikipedia [49.80565462746646]
我々は,情報ギャップと矛盾を事実レベルで特定するための,効率的かつ信頼性の高い手法であるInfoGap法を紹介した。
我々は、LGBTの人々の描写を分析してInfoGapを評価し、英語、ロシア語、フランス語のウィキペディアの2.7Kの伝記ページを解析した。
論文 参考訳(メタデータ) (2024-10-05T20:40:49Z) - An Open Multilingual System for Scoring Readability of Wikipedia [3.992677070507323]
ウィキペディア記事の読みやすさを評価するための多言語モデルを開発した。
ウィキペディアから簡略化されたウィキペディアやオンラインの子供まで、14言語にまたがる新しい多言語データセットを作成します。
我々のモデルはゼロショットシナリオでよく機能し、14言語で80%以上のランキング精度が得られることを示す。
論文 参考訳(メタデータ) (2024-06-03T23:07:18Z) - Curious Rhythms: Temporal Regularities of Wikipedia Consumption [15.686850035802667]
日中交替のグローバルなパターンを除去した後も,個々の物品の消費習慣は日中変化が強く維持されていることを示す。
我々はウィキペディアの記事のアクセスリズムの話題的・文脈的相関を調査し、記事の話題、読者国、アクセスデバイス(モバイル対デスクトップ)が日々の注意パターンの重要な予測因子であることを示す。
論文 参考訳(メタデータ) (2023-05-16T14:48:08Z) - Crawling the Internal Knowledge-Base of Language Models [53.95793060766248]
本稿では,言語モデルの内部知識ベースである「クローリング」の手順について述べる。
我々は、数十のシードエンティティから始まるグラフのクローリングに対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-01-30T12:03:36Z) - Mapping Process for the Task: Wikidata Statements to Text as Wikipedia
Sentences [68.8204255655161]
本稿では,ウィキデータ文をウィキペディアのプロジェクト用自然言語テキスト(WS2T)に変換するタスクに対して,文レベルでのマッピングプロセスを提案する。
主なステップは、文を整理し、四つ組と三つ組のグループとして表現し、それらを英語のウィキペディアで対応する文にマッピングすることである。
文構造解析,ノイズフィルタリング,および単語埋め込みモデルに基づく文成分間の関係について,出力コーパスの評価を行った。
論文 参考訳(メタデータ) (2022-10-23T08:34:33Z) - WikiDes: A Wikipedia-Based Dataset for Generating Short Descriptions
from Paragraphs [66.88232442007062]
ウィキデックスはウィキペディアの記事の短い記述を生成するデータセットである。
データセットは、6987のトピックに関する80万以上の英語サンプルで構成されている。
本論文は,ウィキペディアとウィキデータに多くの記述が欠落していることから,実際的な影響を示すものである。
論文 参考訳(メタデータ) (2022-09-27T01:28:02Z) - Considerations for Multilingual Wikipedia Research [1.5736899098702972]
ウィキペディアの非英語版は、データセットやモデルにさらに多くの言語版が組み込まれている。
本論文は,ウィキペディアの異なる言語版間でどのような違いが生じるのか,研究者が理解するための背景を提供することを目的とする。
論文 参考訳(メタデータ) (2022-04-05T20:34:15Z) - Tracking Knowledge Propagation Across Wikipedia Languages [1.8447697408534176]
本稿では,ウィキペディアにおける言語間知識伝達のデータセットについて述べる。
データセットは309の言語版と3300万の記事をカバーしている。
言語版のサイズは伝播速度と関連していることがわかった。
論文 参考訳(メタデータ) (2021-03-30T18:36:13Z) - Language-agnostic Topic Classification for Wikipedia [1.950869817974852]
本稿では,論文をトピックの分類に分類するための記事のリンクに基づく言語に依存しないアプローチを提案する。
言語に依存したアプローチのパフォーマンスにマッチするが、よりシンプルで、カバー範囲がずっと大きいことを示す。
論文 参考訳(メタデータ) (2021-02-26T22:17:50Z) - Design Challenges in Low-resource Cross-lingual Entity Linking [56.18957576362098]
言語間エンティティリンク (XEL) は、外国語テキスト中のエンティティの言及をウィキペディアのような英語の知識ベースに根拠付ける問題である。
本稿は、英語のウィキペディアの候補タイトルを、特定の外国語の言及に対応付けて識別する重要なステップに焦点を当てる。
本稿では,検索エンジンのクエリログを利用した簡易で効果的なゼロショットXELシステムQuELを提案する。
論文 参考訳(メタデータ) (2020-05-02T04:00:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。