Functional Nanomaterials Design in the Workflow of Building
Machine-Learning Models
- URL: http://arxiv.org/abs/2108.13171v1
- Date: Mon, 16 Aug 2021 05:51:03 GMT
- Title: Functional Nanomaterials Design in the Workflow of Building
Machine-Learning Models
- Authors: Zhexu Xi
- Abstract summary: Machine-learning (ML) techniques have revolutionized a host of research fields of chemical and materials science.
ML provides a more comprehensive insight into combinations with molecules/materials.
The key to the advances in nanomaterials discovery is how input fingerprints and output values can be linked quantitatively.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine-learning (ML) techniques have revolutionized a host of research
fields of chemical and materials science with accelerated, high-efficiency
discoveries in design, synthesis, manufacturing, characterization and
application of novel functional materials, especially at the nanometre scale.
The reason is the time efficiency, prediction accuracy and good generalization
abilities, which gradually replaces the traditional experimental or
computational work. With enormous potentiality to tackle more real-world
problems, ML provides a more comprehensive insight into combinations with
molecules/materials under the fundamental procedures for constructing ML
models, like predicting properties or functionalities from given parameters,
nanoarchitecture design and generating specific models for other purposes. The
key to the advances in nanomaterials discovery is how input fingerprints and
output values can be linked quantitatively. Finally, some great opportunities
and technical challenges are concluded in this fantastic field.
Related papers
- MOFSimBench: Evaluating Universal Machine Learning Interatomic Potentials In Metal--Organic Framework Molecular Modeling [0.19506923346234722]
Universal machine learning interatomic potentials (uMLIPs) have emerged as powerful tools for accelerating atomistic simulations.<n>We introduce MOFSimBench, a benchmark to evaluate uMLIPs on key materials modeling tasks for nanoporous materials.<n>We find that top-performing uMLIPs consistently outperform classical force fields and fine-tuned machine learning potentials across all tasks.
arXiv Detail & Related papers (2025-07-16T00:00:55Z) - Machine-Learning-Assisted Photonic Device Development: A Multiscale Approach from Theory to Characterization [80.82828320306464]
Photonic device development (PDD) has achieved remarkable success in designing and implementing new devices for controlling light across various wavelengths, scales, and applications.<n>PDD is an iterative, five-step process that consists of: i.e. deriving device behavior from design parameters, ii. simulating device performance, iv. fabricating the optimal device, and v. measuring device performance.<n>PDD suffers from large optimization landscapes, uncertainties in structural or optical characterization, and difficulties in implementing robust fabrication processes.<n>In this review, we present a comprehensive perspective on these methods to enable machine-learning-assisted PDD
arXiv Detail & Related papers (2025-06-24T23:32:54Z) - Computational, Data-Driven, and Physics-Informed Machine Learning Approaches for Microstructure Modeling in Metal Additive Manufacturing [0.0]
Metal additive manufacturing enables unprecedented design freedom and the production of customized, complex components.<n>The rapid melting and solidification dynamics inherent to metal AM processes generate heterogeneous, non-equilibrium microstructures.<n>Predicting microstructure and its evolution across spatial and temporal scales remains a central challenge for process optimization and defect mitigation.
arXiv Detail & Related papers (2025-05-02T17:59:54Z) - Machine Learning - Driven Materials Discovery: Unlocking Next-Generation Functional Materials - A minireview [0.0]
Machine learning (ML)-driven approaches are revolutionizing materials discovery, property prediction, and material design.
This review highlights real-world applications of automated ML-driven approaches in predicting mechanical, thermal, electrical, and optical properties of materials.
Ultimately, the synergy between AI, automated experimentation, and computational modeling transforms the way the materials are discovered, optimized, and designed.
arXiv Detail & Related papers (2025-03-22T15:24:38Z) - A General Neural Network Potential for Energetic Materials with C, H, N, and O elements [0.9742644628669695]
High-energy materials (HEMs) are constrained by the prohibitive computational expense and prolonged development cycles.
We develop a general neural network potential (NNP) that efficiently predicts the structural, mechanical, and decomposition properties of HEMs.
arXiv Detail & Related papers (2025-03-03T03:24:59Z) - AtomAgents: Alloy design and discovery through physics-aware multi-modal multi-agent artificial intelligence [0.0]
The proposed physics-aware generative AI platform, AtomAgents, synergizes the intelligence of large language models (LLM)
Our results enable accurate prediction of key characteristics across alloys and highlight the crucial role of solid solution alloying to steer the development of advanced metallic alloys.
arXiv Detail & Related papers (2024-07-13T22:46:02Z) - Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
This paper focuses on the impact of different canonicalization methods, (2) graph creation strategies, and (3) auxiliary tasks, on performance, scalability and symmetry enforcement.
Our findings and insights aim to guide researchers in selecting optimal modeling components for molecular modeling tasks.
arXiv Detail & Related papers (2024-07-11T09:04:12Z) - Unveiling the Potential of AI for Nanomaterial Morphology Prediction [0.0]
This study explores the potential of AI to predict the morphology of nanoparticles within the data availability constraints.
We first generated a new multi-modal dataset that is double the size of analogous studies.
arXiv Detail & Related papers (2024-05-31T19:16:07Z) - Mechanical Characterization and Inverse Design of Stochastic Architected
Metamaterials Using Neural Operators [2.4918888803900727]
Machine learning is emerging as a transformative tool for the design of architected materials.
Here, we introduce a new end-to-end scientific ML framework, leveraging deep neural operators (DeepONet)
Results obtained from spinodal microstructures, printed using two-photon lithography, reveal that the prediction error for mechanical responses is within a range of 5 - 10%.
arXiv Detail & Related papers (2023-11-23T05:23:15Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
We generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories.
We show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules.
arXiv Detail & Related papers (2023-06-15T23:39:07Z) - Artificial intelligence approaches for materials-by-design of energetic
materials: state-of-the-art, challenges, and future directions [0.0]
We review advances in AI-driven materials-by-design and their applications to energetic materials.
We evaluate methods in the literature in terms of their capacity to learn from a small/limited number of data.
We suggest a few promising future research directions for EM materials-by-design, such as meta-learning, active learning, Bayesian learning, and semi-/weakly-supervised learning.
arXiv Detail & Related papers (2022-11-15T14:41:11Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.