Interpretability from a new lens: Integrating Stratification and Domain
knowledge for Biomedical Applications
- URL: http://arxiv.org/abs/2303.09322v1
- Date: Wed, 15 Mar 2023 12:02:02 GMT
- Title: Interpretability from a new lens: Integrating Stratification and Domain
knowledge for Biomedical Applications
- Authors: Anthony Onoja, Francesco Raimondi
- Abstract summary: This paper proposes a novel computational strategy for the stratification of biomedical problem datasets into k-fold cross-validation (CVs)
This approach can improve model stability, establish trust, and provide explanations for outcomes generated by trained IML models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The use of machine learning (ML) techniques in the biomedical field has
become increasingly important, particularly with the large amounts of data
generated by the aftermath of the COVID-19 pandemic. However, due to the
complex nature of biomedical datasets and the use of black-box ML models, a
lack of trust and adoption by domain experts can arise. In response,
interpretable ML (IML) approaches have been developed, but the curse of
dimensionality in biomedical datasets can lead to model instability. This paper
proposes a novel computational strategy for the stratification of biomedical
problem datasets into k-fold cross-validation (CVs) and integrating domain
knowledge interpretation techniques embedded into the current state-of-the-art
IML frameworks. This approach can improve model stability, establish trust, and
provide explanations for outcomes generated by trained IML models.
Specifically, the model outcome, such as aggregated feature weight importance,
can be linked to further domain knowledge interpretations using techniques like
pathway functional enrichment, drug targeting, and repurposing databases.
Additionally, involving end-users and clinicians in focus group discussions
before and after the choice of IML framework can help guide testable
hypotheses, improve performance metrics, and build trustworthy and usable IML
solutions in the biomedical field. Overall, this study highlights the potential
of combining advanced computational techniques with domain knowledge
interpretation to enhance the effectiveness of IML solutions in the context of
complex biomedical datasets.
Related papers
- Explainable AI Methods for Multi-Omics Analysis: A Survey [3.885941688264509]
Multi-omics refers to the integrative analysis of data derived from multiple 'omes'
Deep learning methods are increasingly utilized to integrate multi-omics data, offering insights into molecular interactions and enhancing research into complex diseases.
These models, with their numerous interconnected layers and nonlinear relationships, often function as black boxes, lacking transparency in decision-making processes.
This review explores how xAI can improve the interpretability of deep learning models in multi-omics research, highlighting its potential to provide clinicians with clear insights.
arXiv Detail & Related papers (2024-10-15T05:01:17Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift.
We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes.
arXiv Detail & Related papers (2024-09-06T02:03:38Z) - A Survey for Large Language Models in Biomedicine [31.719451674137844]
This review is based on an analysis of 484 publications sourced from databases including PubMed, Web of Science, and arXiv.
We explore the capabilities of LLMs in zero-shot learning across a broad spectrum of biomedical tasks, including diagnostic assistance, drug discovery, and personalized medicine.
We discuss the challenges that LLMs face in the biomedicine domain including data privacy concerns, limited model interpretability, issues with dataset quality, and ethics.
arXiv Detail & Related papers (2024-08-29T12:39:16Z) - LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation [0.0]
This study introduces a novel "LLMs-in-the-loop" approach to develop supervised neural machine translation models optimized for medical texts.
Custom parallel corpora in six languages were compiled from scientific articles, synthetically generated clinical documents, and medical texts.
Our MarianMT-based models outperform Google Translate, DeepL, and GPT-4-Turbo.
arXiv Detail & Related papers (2024-07-16T19:32:23Z) - Interpretable Machine Learning for Survival Analysis [3.618561939712435]
interpretable machine learning (IML) or explainable artificial intelligence (XAI) has become increasingly important over the last decade.
Lack of readily available IML methods may have deterred medical practitioners and policy makers in public health from leveraging the full potential of machine learning.
We present a review of the limited existing amount of work on IML methods for survival analysis within the context of the general IML taxonomy.
arXiv Detail & Related papers (2024-03-15T12:38:00Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
We study the performance of large language models (LLMs) on a wide spectrum of crucial bioinformatics tasks.
These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems.
Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks.
arXiv Detail & Related papers (2024-02-21T11:27:31Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - UMLS-KGI-BERT: Data-Centric Knowledge Integration in Transformers for
Biomedical Entity Recognition [4.865221751784403]
This work contributes a data-centric paradigm for enriching the language representations of biomedical transformer-encoder LMs by extracting text sequences from the UMLS.
Preliminary results from experiments in the extension of pre-trained LMs as well as training from scratch show that this framework improves downstream performance on multiple biomedical and clinical Named Entity Recognition (NER) tasks.
arXiv Detail & Related papers (2023-07-20T18:08:34Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.