Investigating maximum likelihood based training of infinite mixtures for
uncertainty quantification
- URL: http://arxiv.org/abs/2008.03209v2
- Date: Mon, 17 Aug 2020 15:57:13 GMT
- Title: Investigating maximum likelihood based training of infinite mixtures for
uncertainty quantification
- Authors: Sina D\"aubener and Asja Fischer
- Abstract summary: We investigate the effect of training an infinite mixture distribution with the maximum likelihood method instead of variational inference.
We find that the proposed objective leads to adversarial networks with an increased predictive variance.
- Score: 16.30200782698554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty quantification in neural networks gained a lot of attention in
the past years. The most popular approaches, Bayesian neural networks (BNNs),
Monte Carlo dropout, and deep ensembles have one thing in common: they are all
based on some kind of mixture model. While the BNNs build infinite mixture
models and are derived via variational inference, the latter two build finite
mixtures trained with the maximum likelihood method. In this work we
investigate the effect of training an infinite mixture distribution with the
maximum likelihood method instead of variational inference. We find that the
proposed objective leads to stochastic networks with an increased predictive
variance, which improves uncertainty based identification of
miss-classification and robustness against adversarial attacks in comparison to
a standard BNN with equivalent network structure. The new model also displays
higher entropy on out-of-distribution data.
Related papers
- Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
Uncertainty quantification is an important task in machine learning.
We present a reformulation of the log-marginal likelihood of a NN with BLL which allows for efficient training using backpropagation.
arXiv Detail & Related papers (2023-02-21T20:23:56Z) - Constraining cosmological parameters from N-body simulations with
Variational Bayesian Neural Networks [0.0]
Multiplicative normalizing flows (MNFs) are a family of approximate posteriors for the parameters of BNNs.
We have compared MNFs with respect to the standard BNNs, and the flipout estimator.
MNFs provide more realistic predictive distribution closer to the true posterior mitigating the bias introduced by the variational approximation.
arXiv Detail & Related papers (2023-01-09T16:07:48Z) - How to Combine Variational Bayesian Networks in Federated Learning [0.0]
Federated learning enables multiple data centers to train a central model collaboratively without exposing any confidential data.
deterministic models are capable of performing high prediction accuracy, their lack of calibration and capability to quantify uncertainty is problematic for safety-critical applications.
We study the effects of various aggregation schemes for variational Bayesian neural networks.
arXiv Detail & Related papers (2022-06-22T07:53:12Z) - Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer [77.78479877473899]
We design a spatial-temporal-fusion BNN for efficiently scaling BNNs to large models.
Compared to vanilla BNNs, our approach can greatly reduce the training time and the number of parameters, which contributes to scale BNNs efficiently.
arXiv Detail & Related papers (2021-12-12T17:13:14Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
Implicit neural networks offer competitive performance and reduced memory consumption.
They can remain brittle with respect to input adversarial perturbations.
This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks.
arXiv Detail & Related papers (2021-12-10T03:08:55Z) - Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in
Deep Learning [24.3370326359959]
We propose to predict with a Gaussian mixture model posterior that consists of a weighted sum of Laplace approximations of independently trained deep neural networks.
We theoretically validate that our approach mitigates overconfidence "far away" from the training data and empirically compare against state-of-the-art baselines on standard uncertainty quantification benchmarks.
arXiv Detail & Related papers (2021-11-05T15:52:48Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Why have a Unified Predictive Uncertainty? Disentangling it using Deep
Split Ensembles [39.29536042476913]
Understanding and quantifying uncertainty in black box Neural Networks (NNs) is critical when deployed in real-world settings such as healthcare.
We propose a conceptually simple non-Bayesian approach, deep split ensemble, to disentangle the predictive uncertainties.
arXiv Detail & Related papers (2020-09-25T19:15:26Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Regularizing Class-wise Predictions via Self-knowledge Distillation [80.76254453115766]
We propose a new regularization method that penalizes the predictive distribution between similar samples.
This results in regularizing the dark knowledge (i.e., the knowledge on wrong predictions) of a single network.
Our experimental results on various image classification tasks demonstrate that the simple yet powerful method can significantly improve the generalization ability.
arXiv Detail & Related papers (2020-03-31T06:03:51Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.