論文の概要: Rejoinder: On nearly assumption-free tests of nominal confidence
interval coverage for causal parameters estimated by machine learning
- arxiv url: http://arxiv.org/abs/2008.03288v1
- Date: Fri, 7 Aug 2020 17:38:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-02 01:49:24.228395
- Title: Rejoinder: On nearly assumption-free tests of nominal confidence
interval coverage for causal parameters estimated by machine learning
- Title(参考訳): rejoinder: 機械学習による因果パラメータ推定のための名目信頼区間範囲のほぼ仮定なしテストについて
- Authors: Lin Liu and Rajarshi Mukherjee and James M. Robins
- Abstract要約: Kennedy, Balakrishnan, Wasserman の論文 "On almost assumption-free test of nominal confidence interval coverage for causal parameters estimated by machine learning" は、統計科学で発表された。
これは、ケネディ、バラクリシュナン、ワッサーマンによる論文「機械学習によって推定される因果的パラメータに対する名目的信頼区間のカバレッジに関するほぼ仮定のないテスト」の議論への反論である。
- 参考スコア(独自算出の注目度): 11.731231528534035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This is the rejoinder to the discussion by Kennedy, Balakrishnan and
Wasserman on the paper "On nearly assumption-free tests of nominal confidence
interval coverage for causal parameters estimated by machine learning"
published in Statistical Science.
- Abstract(参考訳): これは、ケネディ、バラクリシュナン、ワッサーマンによる論文「機械学習によって推定される因果的パラメータに対する名目的信頼区間のカバレッジに関するほぼ仮定のないテスト」の議論への反論である。
関連論文リスト
- A unified Bayesian framework for interval hypothesis testing in clinical
trials [4.911220423050305]
アメリカ統計協会(ASA)は統計学者に対して、従来のP値のみに基づいて科学的決定を行うことを警告した。
ベイズ因子に基づく試験と併用した場合, 区間零仮説の枠組みがP値の重要な問題を周航する上で有効であることを示す。
論文 参考訳(メタデータ) (2024-02-21T16:01:06Z) - TeLeS: Temporal Lexeme Similarity Score to Estimate Confidence in
End-to-End ASR [1.8477401359673709]
クラス確率に基づく信頼スコアは、自信過剰なASR予測の品質を正確に表すものではない。
信頼度推定モデル(CEM)を訓練するためのTeLeS(Temporal-Lexeme similarity)の信頼性スコアを提案する。
我々は、ヒンディー語、タミル語、カナダ語という3つの言語で訓練されたASRモデルを用いて、様々なトレーニングデータサイズで実験を行う。
論文 参考訳(メタデータ) (2024-01-06T16:29:13Z) - Fast Entropy-Based Methods of Word-Level Confidence Estimation for
End-To-End Automatic Speech Recognition [86.21889574126878]
本研究では,フレーム単位のエントロピー値を正規化して集約し,単位単位当たりの信頼度と単語毎の信頼度を求める方法を示す。
提案手法をLibriSpeechテストセット上で評価した結果,最大フレーム当たりの信頼度推定値の最大値から,信頼度推定値の最大値の最大値の最大値の最大値の最大値の2倍,4倍の精度を示した。
論文 参考訳(メタデータ) (2022-12-16T20:27:40Z) - A Statistical Analysis of Summarization Evaluation Metrics using
Resampling Methods [60.04142561088524]
信頼区間は比較的広く,信頼性の高い自動測定値の信頼性に高い不確実性を示す。
多くのメトリクスはROUGEよりも統計的改善を示していないが、QAEvalとBERTScoreという2つの最近の研究は、いくつかの評価設定で行われている。
論文 参考訳(メタデータ) (2021-03-31T18:28:14Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
エンドツーエンド自動音声認識(ASR)における信頼度推定の検討
4つのよく知られた音声データセットにおける信頼度手法の広範なベンチマークを提供する。
以上の結果から,ロジットを学習温度でスケーリングすることで,強いベースラインが得られることが示唆された。
論文 参考訳(メタデータ) (2021-01-14T09:51:59Z) - Uncertainty Quantification in Extreme Learning Machine: Analytical
Developments, Variance Estimates and Confidence Intervals [0.0]
不確かさの定量化は、機械学習モデルの予測品質を評価するために不可欠である。
文献で提案されるほとんどの手法は、データに対して強い仮定を行い、入力重みのランダム性を無視したり、信頼区間推定におけるバイアス寄与を無視したりする。
本稿では,これらの制約を克服し,EMMの多様性の理解を向上させる新しい推定法を提案する。
論文 参考訳(メタデータ) (2020-11-03T13:45:59Z) - CoinDICE: Off-Policy Confidence Interval Estimation [107.86876722777535]
強化学習における高信頼行動非依存のオフ政治評価について検討する。
様々なベンチマークにおいて、信頼区間推定が既存の手法よりも厳密で精度が高いことが示されている。
論文 参考訳(メタデータ) (2020-10-22T12:39:11Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - Confidence Sets and Hypothesis Testing in a Likelihood-Free Inference
Setting [5.145741425164947]
$texttACORE$ は LFI に対する頻繁なアプローチであり、最初はパラメータ化された分類問題として古典的確率比テスト (LRT) を定式化する。
$texttACORE$は、統計学、テストの拒絶確率、信頼セットのカバレッジが条件分布関数である、というキーオブザーバに基づいている。
論文 参考訳(メタデータ) (2020-02-24T17:34:49Z) - Binary Classification from Positive Data with Skewed Confidence [85.18941440826309]
肯定的信頼度(Pconf)分類は、有望な弱教師付き学習法である。
実際には、信頼はアノテーションプロセスで生じるバイアスによって歪められることがある。
本稿では、スキュード信頼度のパラメータ化モデルを導入し、ハイパーパラメータを選択する方法を提案する。
論文 参考訳(メタデータ) (2020-01-29T00:04:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。