Learning (Re-)Starting Solutions for Vehicle Routing Problems
- URL: http://arxiv.org/abs/2008.03424v1
- Date: Sat, 8 Aug 2020 02:53:09 GMT
- Title: Learning (Re-)Starting Solutions for Vehicle Routing Problems
- Authors: Xingwen Zhang and Shuang Yang
- Abstract summary: A key challenge in solving a optimization problem is how to guide the agent (i.e., solver) to efficiently explore the enormous search space.
In this paper, we show it is possible to use machine learning to speedup the exploration.
- Score: 14.509927512118544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key challenge in solving a combinatorial optimization problem is how to
guide the agent (i.e., solver) to efficiently explore the enormous search
space. Conventional approaches often rely on enumeration (e.g., exhaustive,
random, or tabu search) or have to restrict the exploration to rather limited
regions (e.g., a single path as in iterative algorithms). In this paper, we
show it is possible to use machine learning to speedup the exploration. In
particular, a value network is trained to evaluate solution candidates, which
provides a useful structure (i.e., an approximate value surface) over the
search space; this value network is then used to screen solutions to help a
black-box optimization agent to initialize or restart so as to navigate through
the search space towards desirable solutions. Experiments demonstrate that the
proposed ``Learn to Restart'' algorithm achieves promising results in solving
Capacitated Vehicle Routing Problems (CVRPs).
Related papers
- BalMCTS: Balancing Objective Function and Search Nodes in MCTS for
Constraint Optimization Problems [7.196057722218442]
Constraint Problems Optimization (COP) pose intricate challenges in problems usually addressed through Branch and Bound (B&B) methods.
We propose a novel neural network algorithm based on a depth-first search algorithm for solving COP.
Our method identifies feasible solutions with a gap of less than 17.63% within the initial 5 feasible solutions.
arXiv Detail & Related papers (2023-12-26T03:09:08Z) - Genetic Algorithms with Neural Cost Predictor for Solving Hierarchical Vehicle Routing Problems [20.684353068460375]
When vehicle routing decisions are intertwined with higher-level decisions, the resulting optimization problems pose significant challenges for computation.
We propose a novel deep-learning-based approach called Genetic Algorithm with Neural Cost Predictor (GANCP) to tackle the challenge.
In particular, our proposed neural network learns the objective values of the HGS-CVRP open-source package that solves capacitated vehicle routing problems.
arXiv Detail & Related papers (2023-10-22T02:46:37Z) - Bayesian Program Learning by Decompiling Amortized Knowledge [50.960612835957875]
We present a novel approach for library learning that directly leverages the neural search policy, effectively "decompiling" its amortized knowledge to extract relevant program components.
This provides stronger amortized inference: the amortized knowledge learnt to reduce search breadth is now also used to reduce search depth.
arXiv Detail & Related papers (2023-06-13T15:35:01Z) - A machine learning framework for neighbor generation in metaheuristic
search [4.521119623956821]
We propose a general machine learning framework for neighbor generation in metaheuristic search.
We validate our methodology on two metaheuristic applications.
arXiv Detail & Related papers (2022-12-22T01:58:04Z) - Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems [2.6782615615913348]
This paper presents a new reinforcement learning approach that is based on entropy.
In addition, we design an off-policy-based reinforcement learning technique that maximises the expected return.
We show that our model can generalise to various route problems.
arXiv Detail & Related papers (2022-05-31T09:51:48Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
Given a node-weighted graph, find a set of independent (mutually nonadjacent) nodes whose node-weight sum is maximum.
Some of the graphs airsing in this application are large, having hundreds of thousands of nodes and hundreds of millions of edges.
We develop a new local search algorithm, which is a metaheuristic in the greedy randomized adaptive search framework.
arXiv Detail & Related papers (2022-03-28T21:34:16Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Ranking Cost: Building An Efficient and Scalable Circuit Routing Planner
with Evolution-Based Optimization [49.207538634692916]
We propose a new algorithm for circuit routing, named Ranking Cost, to form an efficient and trainable router.
In our method, we introduce a new set of variables called cost maps, which can help the A* router to find out proper paths.
Our algorithm is trained in an end-to-end manner and does not use any artificial data or human demonstration.
arXiv Detail & Related papers (2021-10-08T07:22:45Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
We show that an uncertainty aware classifier can solve challenging reinforcement learning problems.
We propose a novel method for computing the normalized maximum likelihood (NML) distribution.
We show that the resulting algorithm has a number of intriguing connections to both count-based exploration methods and prior algorithms for learning reward functions.
arXiv Detail & Related papers (2021-07-15T08:19:57Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Learning 2-opt Heuristics for the Traveling Salesman Problem via Deep
Reinforcement Learning [2.4565068569913384]
We propose to learn a local search gradient based on 2-opt operators via deep reinforcement learning.
We show that the learned policies can improve even over random initial solutions and approach near-optimal solutions at a faster rate than previous state-of-the-art deep learning methods.
arXiv Detail & Related papers (2020-04-03T14:51:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.