論文の概要: Nighttime Dehazing with a Synthetic Benchmark
- arxiv url: http://arxiv.org/abs/2008.03864v3
- Date: Mon, 19 Oct 2020 00:41:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 22:36:50.251001
- Title: Nighttime Dehazing with a Synthetic Benchmark
- Title(参考訳): 合成ベンチマークによる夜間デハジング
- Authors: Jing Zhang and Yang Cao and Zheng-Jun Zha and Dacheng Tao
- Abstract要約: 昼間の鮮明な画像から夜間のハズイ画像をシミュレートする3Rという新しい合成法を提案する。
実空間の光色を以前の経験的分布からサンプリングすることにより,現実的な夜間ハズイ画像を生成する。
実験結果は、画像の品質と実行時間の両方の観点から、最先端の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 147.21955799938115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increasing the visibility of nighttime hazy images is challenging because of
uneven illumination from active artificial light sources and haze
absorbing/scattering. The absence of large-scale benchmark datasets hampers
progress in this area. To address this issue, we propose a novel synthetic
method called 3R to simulate nighttime hazy images from daytime clear images,
which first reconstructs the scene geometry, then simulates the light rays and
object reflectance, and finally renders the haze effects. Based on it, we
generate realistic nighttime hazy images by sampling real-world light colors
from a prior empirical distribution. Experiments on the synthetic benchmark
show that the degrading factors jointly reduce the image quality. To address
this issue, we propose an optimal-scale maximum reflectance prior to
disentangle the color correction from haze removal and address them
sequentially. Besides, we also devise a simple but effective learning-based
baseline which has an encoder-decoder structure based on the MobileNet-v2
backbone. Experiment results demonstrate their superiority over
state-of-the-art methods in terms of both image quality and runtime. Both the
dataset and source code will be available at https://github.com/chaimi2013/3R.
- Abstract(参考訳): 夜間のハズ画像の視認性の向上は、アクティブな人工光源からの均一な照明と、ヘイズ吸収・散乱により困難である。
この領域では大規模なベンチマークデータセットが欠如している。
そこで,本研究では,まずシーンの形状を再現し,光線と物体反射をシミュレートし,最後にヘイズ効果を再現する,夜間のヘイズ画像をシミュレートする3rという新しい合成手法を提案する。
そこで,先行実験分布から実世界の光色をサンプリングし,夜景画像を生成する。
合成ベンチマーク実験により, 劣化要因は画像品質を低下させることがわかった。
そこで本研究では,色補正をヘイズ除去から切り離す前に最適な最大反射率を提案する。
さらに,mobilenet-v2 バックボーンに基づくエンコーダ・デコーダ構造を持つ,シンプルかつ効果的な学習ベースラインを考案する。
実験結果は、画像の品質と実行時間の両方の観点から、最先端の手法よりも優れていることを示す。
データセットとソースコードはhttps://github.com/chaimi2013/3Rで入手できる。
関連論文リスト
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
疎二分量時間画像データから高画質の画像スタックを元の解像度で再構成する新しい方法であるbit2bitを提案する。
Poisson denoisingの最近の研究に触発されて、スパースバイナリ光子データから高密度な画像列を生成するアルゴリズムを開発した。
本研究では,様々な課題の画像条件下でのSPADの高速映像を多種多種に含む新しいデータセットを提案する。
論文 参考訳(メタデータ) (2024-10-30T17:30:35Z) - Sun Off, Lights On: Photorealistic Monocular Nighttime Simulation for Robust Semantic Perception [53.631644875171595]
夜間のシーンは、学習したモデルで意味的に知覚し、人間に注釈を付けるのは難しい。
本手法は,1枚の画像の夜間シミュレーションを3Dで行う方法として,サンオフ,ライトオン (SOLO) と命名された。
夜間画像の視覚的品質と光リアリズムは,拡散モデルを含む競合するアプローチよりも優れているだけでなく,従来の画像は,昼夜適応における意味的夜間セグメンテーションに有益であることが証明されている。
論文 参考訳(メタデータ) (2024-07-29T18:00:09Z) - IllumiNeRF: 3D Relighting Without Inverse Rendering [25.642960820693947]
対象の環境光と推定対象形状を条件とした画像拡散モデルを用いて,各入力画像をリライトする方法を示す。
ニューラル・レージアンス・フィールド (NeRF) をこれらの信頼された画像で再構成し, 対象光の下で新しいビューを描画する。
この戦略は驚くほど競争力があり、複数のリライトベンチマークで最先端の結果が得られることを実証する。
論文 参考訳(メタデータ) (2024-06-10T17:59:59Z) - A Semi-supervised Nighttime Dehazing Baseline with Spatial-Frequency Aware and Realistic Brightness Constraint [19.723367790947684]
実世界における夜間脱ハージングのための半教師付きモデルを提案する。
まず、空間的注意と周波数スペクトルフィルタリングを、空間周波数領域情報相互作用モジュールとして実装する。
第2に、半教師付きトレーニングプロセスにおける擬似ラベルに基づくリトレーニング戦略と局所窓ベースの輝度損失は、迷路や光を抑制するように設計されている。
論文 参考訳(メタデータ) (2024-03-27T13:27:02Z) - Enhancing Visibility in Nighttime Haze Images Using Guided APSF and
Gradient Adaptive Convolution [28.685126418090338]
既存の夜間の脱暖法は、光や低照度の条件を扱うのにしばしば苦労する。
本稿では、光を抑え、低照度領域を高めることにより、夜間のハゼ画像からの視認性を高める。
GTA5夜間ヘイズデータセットでは,PSNRが30.38dBとなり,最先端の手法よりも13%向上した。
論文 参考訳(メタデータ) (2023-08-03T12:58:23Z) - NightHazeFormer: Single Nighttime Haze Removal Using Prior Query
Transformer [39.90066556289063]
我々はナイトヘイズフォーマー(NightHazeFormer)と呼ばれる夜間ヘイズ除去のためのエンドツーエンドのトランスフォーマーベースのフレームワークを提案する。
提案手法は,教師付き事前学習と半教師付き微調整の2段階からなる。
いくつかの合成および実世界のデータセットの実験は、最先端の夜間ヘイズ除去法よりもNightHazeFormerの方が優れていることを示している。
論文 参考訳(メタデータ) (2023-05-16T15:26:09Z) - Relightify: Relightable 3D Faces from a Single Image via Diffusion
Models [86.3927548091627]
単一画像からの3次元顔BRDF再構成を高精度に行うために,拡散モデルを用いた最初のアプローチを提案する。
既存の手法とは対照的に,観測されたテクスチャを直接入力画像から取得することで,より忠実で一貫した推定が可能となる。
論文 参考訳(メタデータ) (2023-05-10T11:57:49Z) - Real-Time Radiance Fields for Single-Image Portrait View Synthesis [85.32826349697972]
本研究では,1つの未提示画像からリアルタイムに3D表現を推測・描画するワンショット手法を提案する。
一つのRGB入力が与えられた場合、画像エンコーダは、ボリュームレンダリングによる3次元新規ビュー合成のためのニューラルラディアンスフィールドの標準三面体表現を直接予測する。
提案手法は消費者ハードウェア上で高速(24fps)であり,テスト時間最適化を必要とする強力なGAN反転ベースラインよりも高品質な結果が得られる。
論文 参考訳(メタデータ) (2023-05-03T17:56:01Z) - When the Sun Goes Down: Repairing Photometric Losses for All-Day Depth
Estimation [47.617222712429026]
既存の測光損失を昼夜両方の画像に有効にするための3つの手法の組み合わせについて述べる。
まず、連続するフレーム間で起こる光の変化を補うために、ピクセルごとの神経強度変換を導入する。
第2に,推定エゴモーションと深度によって引き起こされる再投影対応を補正するために,画素ごとの残留フローマップを推定する。
論文 参考訳(メタデータ) (2022-06-28T09:29:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。