論文の概要: Relightify: Relightable 3D Faces from a Single Image via Diffusion
Models
- arxiv url: http://arxiv.org/abs/2305.06077v2
- Date: Tue, 22 Aug 2023 01:06:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 21:00:43.331941
- Title: Relightify: Relightable 3D Faces from a Single Image via Diffusion
Models
- Title(参考訳): Relightify:拡散モデルによる単一画像からの3D顔の再現性
- Authors: Foivos Paraperas Papantoniou, Alexandros Lattas, Stylianos Moschoglou,
Stefanos Zafeiriou
- Abstract要約: 単一画像からの3次元顔BRDF再構成を高精度に行うために,拡散モデルを用いた最初のアプローチを提案する。
既存の手法とは対照的に,観測されたテクスチャを直接入力画像から取得することで,より忠実で一貫した推定が可能となる。
- 参考スコア(独自算出の注目度): 86.3927548091627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Following the remarkable success of diffusion models on image generation,
recent works have also demonstrated their impressive ability to address a
number of inverse problems in an unsupervised way, by properly constraining the
sampling process based on a conditioning input. Motivated by this, in this
paper, we present the first approach to use diffusion models as a prior for
highly accurate 3D facial BRDF reconstruction from a single image. We start by
leveraging a high-quality UV dataset of facial reflectance (diffuse and
specular albedo and normals), which we render under varying illumination
settings to simulate natural RGB textures and, then, train an unconditional
diffusion model on concatenated pairs of rendered textures and reflectance
components. At test time, we fit a 3D morphable model to the given image and
unwrap the face in a partial UV texture. By sampling from the diffusion model,
while retaining the observed texture part intact, the model inpaints not only
the self-occluded areas but also the unknown reflectance components, in a
single sequence of denoising steps. In contrast to existing methods, we
directly acquire the observed texture from the input image, thus, resulting in
more faithful and consistent reflectance estimation. Through a series of
qualitative and quantitative comparisons, we demonstrate superior performance
in both texture completion as well as reflectance reconstruction tasks.
- Abstract(参考訳): 画像生成における拡散モデルの顕著な成功に続いて、最近の研究は、条件付け入力に基づいてサンプリング過程を適切に制約することにより、教師なしの方法で多くの逆問題に対処できる印象的な能力を示した。
そこで本研究では,1枚の画像から高精度な3次元顔BRDF再構成を行うために,拡散モデルを用いた最初のアプローチを提案する。
まず,自然のRGBテクスチャをシミュレートするために,様々な照明条件下でレンダリングする高品質な顔反射率データセット(拡散およびスペクトルアルベドおよび正規値)を利用し,その上で,合成されたテクスチャと反射率成分の組合わせによる非条件拡散モデルを訓練する。
テスト時には、与えられた画像に3d morphableモデルを適用し、部分的なuvテクスチャで顔を解き放つ。
拡散モデルからサンプリングすることにより、観察されたテクスチャ部を無傷に保ちながら、モデルは、自己閉鎖領域だけでなく、未知の反射成分を1つのデノナイジングステップで塗布する。
既存の手法とは対照的に,観測されたテクスチャを直接入力画像から取得し,より忠実で一貫した反射率推定を行う。
質的,定量的な比較を行い,テクスチャ補完と反射率再構成の両タスクにおいて優れた性能を示す。
関連論文リスト
- IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination [37.96484120807323]
本稿では,未知の静止照明条件下で撮影されたポーズ画像から対象物質を回収することを目的とする。
我々は、最適化プロセスの正規化のための生成モデルを用いて、その材料を事前に学習する。
実世界および合成データセットを用いた実験により,本手法が材料回収における最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-04-17T17:45:08Z) - UniDream: Unifying Diffusion Priors for Relightable Text-to-3D Generation [101.2317840114147]
We present UniDream, a text-to-3D generation framework by integration priors。
提案手法は,(1)アルベド正規配位型多視点拡散・再構成モデルを得るための2相学習プロセス,(2)訓練された再構成・拡散モデルを用いたスコア蒸留サンプル(SDS)に基づく幾何およびアルベドテクスチャのプログレッシブ生成手順,(3)安定拡散モデルに基づく固定アルベドを保ちながらPBR生成を確定するSDSの革新的な応用,の3つからなる。
論文 参考訳(メタデータ) (2023-12-14T09:07:37Z) - Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views [47.215089338101066]
スパースビュー入力に適した新しい3D再構成手法であるスパース3Dを提案する。
提案手法は,多視点拡散モデルから頑健な先行情報を抽出し,ニューラルラディアンス場を改良する。
強力な画像拡散モデルから2Dプリエントをタップすることで、我々の統合モデルは、常に高品質な結果をもたらす。
論文 参考訳(メタデータ) (2023-08-27T11:52:00Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
本稿では,3次元プリミティブを用いて,シンプルでコンパクトで動作可能な3次元世界表現を実現する手法を提案する。
既存の3次元入力データに依存するプリミティブ分解法とは異なり,本手法は画像を直接操作する。
得られたテクスチャ化されたプリミティブは入力画像を忠実に再構成し、視覚的な3Dポイントを正確にモデル化する。
論文 参考訳(メタデータ) (2023-07-11T17:58:31Z) - $PC^2$: Projection-Conditioned Point Cloud Diffusion for Single-Image 3D
Reconstruction [97.06927852165464]
単一のRGB画像から物体の3次元形状を再構築することは、コンピュータビジョンにおける長年の課題である。
条件付き偏光拡散プロセスによりスパース点雲を生成する単一像3次元再構成法を提案する。
論文 参考訳(メタデータ) (2023-02-21T13:37:07Z) - SupeRVol: Super-Resolution Shape and Reflectance Estimation in Inverse
Volume Rendering [42.0782248214221]
SupeRVolは、超高解像度でカラー画像の集合から3次元形状と材料パラメータを復元する逆レンダリングパイプラインである。
個々の入力画像よりもシャープな再構成を生成し、低解像度画像からの3Dモデリングに最適である。
論文 参考訳(メタデータ) (2022-12-09T16:30:17Z) - DiffRF: Rendering-Guided 3D Radiance Field Diffusion [18.20324411024166]
本稿では,拡散確率モデルに基づく3次元放射場合成の新しい手法であるDiffRFを紹介する。
2次元拡散モデルとは対照的に、我々のモデルは多視点一貫した先行情報を学習し、自由視点合成と正確な形状生成を可能にする。
論文 参考訳(メタデータ) (2022-12-02T14:37:20Z) - AvatarMe++: Facial Shape and BRDF Inference with Photorealistic
Rendering-Aware GANs [119.23922747230193]
そこで本研究では,レンダリング可能な3次元顔形状とBRDFの再構成を,単一の"in-the-wild"画像から実現した最初の手法を提案する。
本手法は,1枚の低解像度画像から,高解像度の3次元顔の再構成を行う。
論文 参考訳(メタデータ) (2021-12-11T11:36:30Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
本稿では,GAR(Generative Adversa Renderer)について紹介する。
GARは、グラフィックルールに頼るのではなく、複雑な現実世界のイメージをモデル化することを学ぶ。
本手法は,複数顔再構成における最先端性能を実現する。
論文 参考訳(メタデータ) (2021-05-06T04:16:06Z) - Using Adaptive Gradient for Texture Learning in Single-View 3D
Reconstruction [0.0]
3次元モデル再構築のための学習ベースのアプローチは、現代の応用によって注目を集めている。
本稿では,サンプリング画像のばらつきに基づいて予測座標の勾配を最適化し,新しいサンプリングアルゴリズムを提案する。
また,frechetインセプション距離(fid)を用いて学習における損失関数を形成し,レンダリング画像と入力画像とのギャップを橋渡しする。
論文 参考訳(メタデータ) (2021-04-29T07:52:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。