論文の概要: Road Segmentation for Remote Sensing Images using Adversarial Spatial
Pyramid Networks
- arxiv url: http://arxiv.org/abs/2008.04021v1
- Date: Mon, 10 Aug 2020 11:00:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 23:05:54.856122
- Title: Road Segmentation for Remote Sensing Images using Adversarial Spatial
Pyramid Networks
- Title(参考訳): 逆空間ピラミッドネットワークを用いたリモートセンシング画像の道路セグメンテーション
- Authors: Pourya Shamsolmoali, Masoumeh Zareapoor, Huiyu Zhou, Ruili Wang, and
Jie Yang
- Abstract要約: 合成画像生成と道路分割に構造化領域適応を適用した新しいモデルを提案する。
マルチレベルの特徴マップから学び、特徴のセマンティクスを改善するために、新しいスケールワイズアーキテクチャが導入された。
我々のモデルは、14.89Mパラメータと86.78B FLOPを持つマサチューセッツのデータセット上で、最先端の78.86 IOUを達成し、4倍少ないFLOPを持つが、より高精度(+3.47% IOU)である。
- 参考スコア(独自算出の注目度): 28.32775611169636
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Road extraction in remote sensing images is of great importance for a wide
range of applications. Because of the complex background, and high density,
most of the existing methods fail to accurately extract a road network that
appears correct and complete. Moreover, they suffer from either insufficient
training data or high costs of manual annotation. To address these problems, we
introduce a new model to apply structured domain adaption for synthetic image
generation and road segmentation. We incorporate a feature pyramid network into
generative adversarial networks to minimize the difference between the source
and target domains. A generator is learned to produce quality synthetic images,
and the discriminator attempts to distinguish them. We also propose a feature
pyramid network that improves the performance of the proposed model by
extracting effective features from all the layers of the network for describing
different scales objects. Indeed, a novel scale-wise architecture is introduced
to learn from the multi-level feature maps and improve the semantics of the
features. For optimization, the model is trained by a joint reconstruction loss
function, which minimizes the difference between the fake images and the real
ones. A wide range of experiments on three datasets prove the superior
performance of the proposed approach in terms of accuracy and efficiency. In
particular, our model achieves state-of-the-art 78.86 IOU on the Massachusetts
dataset with 14.89M parameters and 86.78B FLOPs, with 4x fewer FLOPs but higher
accuracy (+3.47% IOU) than the top performer among state-of-the-art approaches
used in the evaluation.
- Abstract(参考訳): リモートセンシング画像における道路抽出は、幅広い用途において非常に重要である。
複雑な背景と高密度のため、既存の手法のほとんどは正確かつ完全な道路網を正確に抽出することができない。
さらに、トレーニングデータ不足や手動アノテーションの高コストに悩まされている。
これらの問題に対処するために,合成画像生成と道路セグメンテーションに構造化ドメイン適応を適用する新しいモデルを提案する。
我々は,特徴ピラミッドネットワークを生成敵ネットワークに組み込んで,ソースとターゲットドメインの違いを最小限に抑える。
ジェネレータは高品質な合成画像を生成するために学習され、判別器はそれらを区別しようとする。
また,異なるスケールのオブジェクトを記述するために,ネットワークの全レイヤから有効な特徴を抽出することにより,提案モデルの性能を向上させる機能ピラミッドネットワークを提案する。
実際、マルチレベルの特徴マップから学び、特徴のセマンティクスを改善するために、新しいスケールワイズアーキテクチャが導入されている。
最適化のために、モデルは、偽画像と実画像との差を最小限に抑える共同再構成損失関数によって訓練される。
3つのデータセットに対する幅広い実験は、精度と効率の点で提案手法の優れた性能を証明している。
特に,14.89mのパラメータと86.78bのフラップを持つマサチューセッツのデータセットにおいて,最先端の78.86 iouを4倍のフロップと高い精度(+3.47%iou)で達成した。
関連論文リスト
- Lightweight single-image super-resolution network based on dual paths [0.552480439325792]
ディープラーニングのシングルイメージ超解像(SISR)アルゴリズムには,畳み込みニューラルネットワークとTransformerに基づく2つのモデルがある。
本稿では,2方向相補的畳み込みとトランスフォーマーに基づく,軽量なマルチスケール機能融合ネットワークモデルを提案する。
論文 参考訳(メタデータ) (2024-09-10T15:31:37Z) - Parameter-Inverted Image Pyramid Networks [49.35689698870247]
Inverted Image Pyramid Networks (PIIP) と呼ばれる新しいネットワークアーキテクチャを提案する。
私たちの中核となる考え方は、パラメータサイズの異なるモデルを使用して、画像ピラミッドの解像度の異なるレベルを処理することです。
PIIPは、オブジェクト検出、セグメンテーション、画像分類などのタスクにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-06-06T17:59:10Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Randomize to Generalize: Domain Randomization for Runway FOD Detection [1.4249472316161877]
細い物体検出は、小型化、低解像度化、オクルージョン化、背景クラッタ、照明条件、被写体対画像比の小さいため困難である。
本稿では,SRIA(Synthetic Image Augmentation)の新たな2段階手法を提案する。
検出精度は初期41%からOODテストセットの92%に改善した。
論文 参考訳(メタデータ) (2023-09-23T05:02:31Z) - Semantic Labeling of High Resolution Images Using EfficientUNets and
Transformers [5.177947445379688]
畳み込みニューラルネットワークとディープトランスを組み合わせた新しいセグメンテーションモデルを提案する。
提案手法は,最先端技術と比較してセグメント化精度が向上することを示す。
論文 参考訳(メタデータ) (2022-06-20T12:03:54Z) - SDWNet: A Straight Dilated Network with Wavelet Transformation for Image
Deblurring [23.86692375792203]
画像劣化は、ぼやけた画像から鋭い画像を復元することを目的としたコンピュータビジョンの問題である。
我々のモデルは拡張畳み込みを用いて空間分解能の高い大きな受容場を得ることができる。
本稿では,ウェーブレット変換を用いた新しいモジュールを提案する。
論文 参考訳(メタデータ) (2021-10-12T07:58:10Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Multi-scale Attention U-Net (MsAUNet): A Modified U-Net Architecture for
Scene Segmentation [1.713291434132985]
画像からコンテキスト情報を用いたシーンセグメンテーションのためのマルチスケールアテンションネットワークを提案する。
このネットワークは、局所的な特徴をグローバルな特徴にマップし、精度を向上し、識別画像領域を強調する。
我々はPascalVOC2012とADE20kという2つの標準データセットでモデルを評価した。
論文 参考訳(メタデータ) (2020-09-15T08:03:41Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
我々は,観測された空間コンテキストを捉えるために,グラフ伝搬を採用することを提案する。
次に、注意機構を伝搬に適用し、ネットワークが文脈情報を適応的にモデル化することを奨励する。
最後に、抽出したマルチモーダル特徴を効果的に活用するための対称ゲート融合戦略を導入する。
本稿では,Adaptive Context-Aware Multi-Modal Network (ACMNet) を2つのベンチマークで評価した。
論文 参考訳(メタデータ) (2020-08-25T06:00:06Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。