論文の概要: Deep Learning-based Human Detection for UAVs with Optical and Infrared
Cameras: System and Experiments
- arxiv url: http://arxiv.org/abs/2008.04197v1
- Date: Mon, 10 Aug 2020 15:30:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 23:34:29.693334
- Title: Deep Learning-based Human Detection for UAVs with Optical and Infrared
Cameras: System and Experiments
- Title(参考訳): 光・赤外線カメラを用いたUAVの深層学習に基づく人体検出:システムと実験
- Authors: Timo Hinzmann, Tobias Stegemann, Cesar Cadena, Roland Siegwart
- Abstract要約: 本稿では,光学(RGB)と長波赤外線(LWIR)カメラを用いた深層学習に基づく人体検知システムを提案する。
それぞれのスペクトルにおいて、ResNetバックボーンを備えたカスタマイズされたRetinaNetネットワークは、人間の検出を提供する。
境界ボックスアンカーを最適化し,画像解像度を向上することにより,高高度からの欠落検出数を20%以上削減できることを示す。
- 参考スコア(独自算出の注目度): 35.342730238802886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present our deep learning-based human detection system that
uses optical (RGB) and long-wave infrared (LWIR) cameras to detect, track,
localize, and re-identify humans from UAVs flying at high altitude. In each
spectrum, a customized RetinaNet network with ResNet backbone provides human
detections which are subsequently fused to minimize the overall false detection
rate. We show that by optimizing the bounding box anchors and augmenting the
image resolution the number of missed detections from high altitudes can be
decreased by over 20 percent. Our proposed network is compared to different
RetinaNet and YOLO variants, and to a classical optical-infrared human
detection framework that uses hand-crafted features. Furthermore, along with
the publication of this paper, we release a collection of annotated
optical-infrared datasets recorded with different UAVs during search-and-rescue
field tests and the source code of the implemented annotation tool.
- Abstract(参考訳): 本稿では,光(rgb)と長波赤外線(lwir)カメラを用いて高高度で飛行するuavから人間を検知し,追跡し,局所化し,再同定する,深層学習に基づく人間検出システムを提案する。
それぞれのスペクトルにおいて、ResNetバックボーンを備えたカスタマイズされたRetinaNetネットワークは、人間の検出を提供する。
境界ボックスアンカーを最適化し,画像解像度を向上することにより,高高度からの欠落検出数を20%以上削減できることを示す。
提案するネットワークは,異なるretinanetとyolo,および手作りの特徴を用いた従来の光学赤外検出フレームワークと比較した。
さらに,本論文の公開とともに,検索・救助フィールドテスト中に異なるUAVで記録された注釈付き赤外線データセットと,実装されたアノテーションツールのソースコードを公開する。
関連論文リスト
- UAVs and Neural Networks for search and rescue missions [0.0]
無人航空機(UAV)が捉えた空中画像において,車,人,火などの興味の対象を検出する方法を提案する。
これを実現するために,ニューラルネットワークを用いて教師あり学習のためのデータセットを作成する。
論文 参考訳(メタデータ) (2023-10-09T08:27:35Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - DensePose From WiFi [86.61881052177228]
WiFi信号の位相と振幅を24のヒト領域内の紫外線座標にマッピングするディープニューラルネットワークを開発した。
本モデルでは,複数の被験者の密集したポーズを,画像に基づくアプローチと同等の性能で推定することができる。
論文 参考訳(メタデータ) (2022-12-31T16:48:43Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
本研究は、物体検出のために異なるように見える赤外線と可視画像の融合の問題に対処する。
従来のアプローチでは、2つのモダリティの根底にある共通点を発見し、反復最適化またはディープネットワークによって共通空間に融合する。
本稿では、融合と検出の連立問題に対する二段階最適化の定式化を提案し、その後、核融合と一般的に使用される検出ネットワークのためのターゲット認識デュアル逆学習(TarDAL)ネットワークに展開する。
論文 参考訳(メタデータ) (2022-03-30T11:44:56Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
変換器を用いた赤外線小径目標検出手法を提案する。
画像特徴の相互作用情報をより広い範囲で学習するために,変換器の自己認識機構を採用する。
最小限のターゲットの機能を学習するための機能拡張モジュールも設計しています。
論文 参考訳(メタデータ) (2021-09-29T12:23:41Z) - Unmanned Aerial Vehicle Visual Detection and Tracking using Deep Neural
Networks: A Performance Benchmark [22.21369001886134]
無人航空機(UAV)は、悪用と悪用の両方により、航空安全に大きなリスクをもたらす可能性がある。
uav検出の一般的な技術は可視帯および熱赤外イメージング、電波、レーダーである。
画像に基づく物体検出のためのディープニューラルネットワーク(DNN)の最近の進歩は、この検出と追跡タスクに視覚情報を使用する可能性を開く。
論文 参考訳(メタデータ) (2021-03-25T15:51:53Z) - An Analysis of Deep Object Detectors For Diver Detection [19.14344722263869]
ビデオから得られたダイバーの注釈付き画像を約105,000枚作成する。
私たちは、Mobilenetを使ったSSD、Faster R-CNN、YOLOなど、オブジェクト検出のための最先端のディープニューラルネットワークをトレーニングしています。
この結果に基づき、ロボットのリアルタイム応用にTiny-YOLOv4を推奨する。
論文 参考訳(メタデータ) (2020-11-25T01:50:32Z) - UAV-AdNet: Unsupervised Anomaly Detection using Deep Neural Networks for
Aerial Surveillance [20.318367304051176]
本稿では,重要なインフラの監視のために,ディープニューラルネットワークを用いた全体的異常検出システムを提案する。
まず,鳥視画像中の物体の空間配置を明示的に表現する手法を提案する。
次に、教師なし異常検出(UAV-AdNet)のためのディープニューラルネットワークアーキテクチャを提案する。
文献研究とは異なり、GPSと画像データを組み合わせて異常な観察を予測する。
論文 参考訳(メタデータ) (2020-11-05T14:26:29Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
ドローンによる車両検出は、空中画像中の車両の位置とカテゴリーを見つけることを目的としている。
我々はDroneVehicleと呼ばれる大規模ドローンベースのRGB赤外線車両検出データセットを構築した。
私たちのDroneVehicleは28,439RGBの赤外線画像を収集し、都市道路、住宅地、駐車場、その他のシナリオを昼から夜までカバーしています。
論文 参考訳(メタデータ) (2020-03-05T05:29:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。