論文の概要: Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds
- arxiv url: http://arxiv.org/abs/2109.14379v1
- Date: Wed, 29 Sep 2021 12:23:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-30 14:49:39.999263
- Title: Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds
- Title(参考訳): 複雑な背景下での変圧器による赤外小型ターゲット検出
- Authors: Fangcen Liu, Chenqiang Gao, Fang Chen, Deyu Meng, Wangmeng Zuo, Xinbo
Gao
- Abstract要約: 変換器を用いた赤外線小径目標検出手法を提案する。
画像特徴の相互作用情報をより広い範囲で学習するために,変換器の自己認識機構を採用する。
最小限のターゲットの機能を学習するための機能拡張モジュールも設計しています。
- 参考スコア(独自算出の注目度): 155.388487263872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The infrared small-dim target detection is one of the key techniques in the
infrared search and tracking system. Since the local regions which similar to
infrared small-dim targets spread over the whole background, exploring the
interaction information amongst image features in large-range dependencies to
mine the difference between the target and background is crucial for robust
detection. However, existing deep learning-based methods are limited by the
locality of convolutional neural networks, which impairs the ability to capture
large-range dependencies. To this end, we propose a new infrared small-dim
target detection method with the transformer. We adopt the self-attention
mechanism of the transformer to learn the interaction information of image
features in a larger range. Additionally, we design a feature enhancement
module to learn more features of small-dim targets. After that, we adopt a
decoder with the U-Net-like skip connection operation to get the detection
result. Extensive experiments on two public datasets show the obvious
superiority of the proposed method over state-of-the-art methods.
- Abstract(参考訳): 赤外線小ディムターゲット検出は、赤外線サーチ・トラッキングシステムにおける重要な技術の一つである。
赤外線小ディムターゲットと類似する局所領域は背景全体に拡がっているため,画像特徴間の相互作用情報を広範囲に依存して探究し,対象と背景の差異を探究することはロバストな検出に不可欠である。
しかし、既存のディープラーニングベースの手法は畳み込みニューラルネットワークの局所性によって制限されるため、大規模な依存関係をキャプチャする能力が損なわれる。
そこで本研究では,変換器を用いた赤外小型目標検出手法を提案する。
画像特徴の相互作用情報をより広い範囲で学習するために,変圧器の自己着脱機構を採用する。
さらに,小型ターゲットのさらなる特徴を学習するための機能拡張モジュールを設計する。
その後、u-netライクなスキップ接続操作を備えたデコーダを採用し、検出結果を得る。
2つの公開データセットに対する大規模な実験は、最先端の手法よりも提案手法の明らかな優位性を示している。
関連論文リスト
- Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - Infrared Small Target Detection based on Adjustable Sensitivity Strategy and Multi-Scale Fusion [2.661766509317245]
調整可能な感度(AS)戦略とマルチスケール融合に基づく改良された赤外線小ターゲット検出手法を提案する。
具体的には、マルチスケール方向対応ネットワーク(MSDA-Net)に基づくマルチスケールモデル融合フレームワークを構築する。
このスキームは、PRCV 2024ワイドエリア赤外線小目標検出競技で優勝した。
論文 参考訳(メタデータ) (2024-07-29T15:22:02Z) - Multi-Scale Direction-Aware Network for Infrared Small Target Detection [2.661766509317245]
赤外小目標検出は、背景とターゲットを効果的に分離することが難しい問題に直面している。
我々は、赤外線小ターゲットの高周波方向特徴を統合するためのマルチスケール方向対応ネットワーク(MSDA-Net)を提案する。
MSDA-Netは、パブリックNUDT-SIRST、SIRST、IRSTD-1kデータセット上で、最先端(SOTA)結果を達成する。
論文 参考訳(メタデータ) (2024-06-04T07:23:09Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - EFLNet: Enhancing Feature Learning for Infrared Small Target Detection [20.546186772828555]
単一フレームの赤外線小目標検出は難しい課題であると考えられている。
ターゲットと背景の極端に不均衡のため、境界ボックスの回帰は赤外線小ターゲットに対して非常に敏感である。
本稿では,これらの問題に対処する機能学習ネットワーク(EFLNet)を提案する。
論文 参考訳(メタデータ) (2023-07-27T09:23:22Z) - ABC: Attention with Bilinear Correlation for Infrared Small Target
Detection [4.7379300868029395]
CNNに基づく深層学習法は、赤外線小ターゲット(IRST)のセグメンテーションに有効ではない
バイリニア相関(ABC)を用いた注目モデルを提案する。
ABCはトランスアーキテクチャに基づいており、特徴抽出と融合のための新しいアテンション機構を備えた畳み込み線形核融合トランス (CLFT) モジュールを含んでいる。
論文 参考訳(メタデータ) (2023-03-18T03:47:06Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
本研究は、物体検出のために異なるように見える赤外線と可視画像の融合の問題に対処する。
従来のアプローチでは、2つのモダリティの根底にある共通点を発見し、反復最適化またはディープネットワークによって共通空間に融合する。
本稿では、融合と検出の連立問題に対する二段階最適化の定式化を提案し、その後、核融合と一般的に使用される検出ネットワークのためのターゲット認識デュアル逆学習(TarDAL)ネットワークに展開する。
論文 参考訳(メタデータ) (2022-03-30T11:44:56Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
本稿では,高速な物体検出のための新しいディープラーニングアルゴリズムを提案する。
提案アルゴリズムは,1つのCPUスレッドと同時に,競合精度と高い推論効率を実現する。
論文 参考訳(メタデータ) (2020-01-22T15:23:48Z) - TBC-Net: A real-time detector for infrared small target detection using
semantic constraint [18.24737906712967]
深層学習は、小さな目標特徴の学習が困難であるため、赤外線小目標検出にはほとんど使われない。
赤外線小ターゲット検出のための新しい軽量畳み込みニューラルネットワークTBC-Netを提案する。
論文 参考訳(メタデータ) (2019-12-27T05:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。