ARPM-net: A novel CNN-based adversarial method with Markov Random Field
enhancement for prostate and organs at risk segmentation in pelvic CT images
- URL: http://arxiv.org/abs/2008.04488v4
- Date: Thu, 17 Sep 2020 21:28:26 GMT
- Title: ARPM-net: A novel CNN-based adversarial method with Markov Random Field
enhancement for prostate and organs at risk segmentation in pelvic CT images
- Authors: Zhuangzhuang Zhang, Tianyu Zhao, Hiram Gay, Weixiong Zhang, Baozhou
Sun
- Abstract summary: The research is to develop a novel CNN-based adversarial deep learning method to improve and expedite the multi-organ semantic segmentation of CT images.
The proposed adversarial multi-residual multi-scale pooling Markov Random Field (MRF) enhanced network (ARPM-net) implements an adversarial training scheme.
The accuracy of modeled contours was measured with the Dice similarity coefficient (DSC), Average Hausdorff Distance (AHD), Average Surface Hausdorff Distance (ASHD), and relative Volume Difference (VD) using clinical contours as references.
- Score: 10.011212599949541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Purpose: The research is to develop a novel CNN-based adversarial deep
learning method to improve and expedite the multi-organ semantic segmentation
of CT images, and to generate accurate contours on pelvic CT images. Methods:
Planning CT and structure datasets for 120 patients with intact prostate cancer
were retrospectively selected and divided for 10-fold cross-validation. The
proposed adversarial multi-residual multi-scale pooling Markov Random Field
(MRF) enhanced network (ARPM-net) implements an adversarial training scheme. A
segmentation network and a discriminator network were trained jointly, and only
the segmentation network was used for prediction. The segmentation network
integrates a newly designed MRF block into a variation of multi-residual U-net.
The discriminator takes the product of the original CT and the
prediction/ground-truth as input and classifies the input into fake/real. The
segmentation network and discriminator network can be trained jointly as a
whole, or the discriminator can be used for fine-tuning after the segmentation
network is coarsely trained. Multi-scale pooling layers were introduced to
preserve spatial resolution during pooling using less memory compared to atrous
convolution layers. An adaptive loss function was proposed to enhance the
training on small or low contrast organs. The accuracy of modeled contours was
measured with the Dice similarity coefficient (DSC), Average Hausdorff Distance
(AHD), Average Surface Hausdorff Distance (ASHD), and relative Volume
Difference (VD) using clinical contours as references to the ground-truth. The
proposed ARPM-net method was compared to several stateof-the-art deep learning
methods.
Related papers
- CT-based brain ventricle segmentation via diffusion Schrödinger Bridge without target domain ground truths [0.9720086191214947]
Efficient and accurate brain ventricle segmentation from clinical CT scans is critical for emergency surgeries like ventriculostomy.
We introduce a novel uncertainty-aware ventricle segmentation technique without the need of CT segmentation ground truths.
Our method employs the diffusion Schr"odinger Bridge and an attention recurrent residual U-Net to capitalize on unpaired CT and MRI scans.
arXiv Detail & Related papers (2024-05-28T15:17:58Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Multipath CNN with alpha matte inference for knee tissue segmentation
from MRI [2.064612766965483]
This paper presents a deep learning based automatic segmentation framework for knee tissue segmentation.
A novel multipath CNN-based method is proposed, which consists of a decoder-based segmentation network in combination with a low rank tensor-reconstructed segmentation network.
To further improve the segmentation from CNNs, trimap generation, which effectively utilizes superimposed regions, is proposed.
arXiv Detail & Related papers (2021-09-29T07:48:47Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Learning Fuzzy Clustering for SPECT/CT Segmentation via Convolutional
Neural Networks [5.3123694982708365]
Quantitative bone single-photon emission computed tomography (QBSPECT) has the potential to provide a better quantitative assessment of bone metastasis than planar bone scintigraphy.
The segmentation of anatomical regions-of-interests (ROIs) still relies heavily on the manual delineation by experts.
This work proposes a fast and robust automated segmentation method for partitioning a QBSPECT image into lesion, bone, and background.
arXiv Detail & Related papers (2021-04-17T19:03:52Z) - Learning Multi-Modal Volumetric Prostate Registration with Weak
Inter-Subject Spatial Correspondence [2.6894568533991543]
We introduce an auxiliary input to the neural network for the prior information about the prostate location in the MR sequence.
With weakly labelled MR-TRUS prostate data, we showed registration quality comparable to the state-of-the-art deep learning-based method.
arXiv Detail & Related papers (2021-02-09T16:48:59Z) - Automatic Segmentation of Gross Target Volume of Nasopharynx Cancer
using Ensemble of Multiscale Deep Neural Networks with Spatial Attention [2.204996105506197]
We propose a 2.5D Convolutional Neural Network (CNN) to handle the difference of inplane and through-plane resolution.
We also propose a spatial attention module to enable the network to focus on small target, and use channel attention to further improve the segmentation performance.
arXiv Detail & Related papers (2021-01-27T08:20:49Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.