論文の概要: Implanting Synthetic Lesions for Improving Liver Lesion Segmentation in
CT Exams
- arxiv url: http://arxiv.org/abs/2008.04690v1
- Date: Tue, 11 Aug 2020 13:23:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 12:21:15.453458
- Title: Implanting Synthetic Lesions for Improving Liver Lesion Segmentation in
CT Exams
- Title(参考訳): CT検査における肝病変セグメンテーション改善のためのインプラント合成病変
- Authors: Dario Augusto Borges Oliveira
- Abstract要約: 我々は,CTスライスに現実的な病変を移植し,リッチで制御可能なトレーニングサンプルセットを提供する。
以上の結果から,CTスライスにおける肝病変の分節モデルの性能向上が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of supervised lesion segmentation algorithms using Computed
Tomography (CT) exams depends significantly on the quantity and variability of
samples available for training. While annotating such data constitutes a
challenge itself, the variability of lesions in the dataset also depends on the
prevalence of different types of lesions. This phenomenon adds an inherent bias
to lesion segmentation algorithms that can be diminished, among different
possibilities, using aggressive data augmentation methods. In this paper, we
present a method for implanting realistic lesions in CT slices to provide a
rich and controllable set of training samples and ultimately improving semantic
segmentation network performances for delineating lesions in CT exams. Our
results show that implanting synthetic lesions not only improves (up to around
12\%) the segmentation performance considering different architectures but also
that this improvement is consistent among different image synthesis networks.
We conclude that increasing the variability of lesions synthetically in terms
of size, density, shape, and position seems to improve the performance of
segmentation models for liver lesion segmentation in CT slices.
- Abstract(参考訳): Computed Tomography (CT) 試験を用いた教師付き病変分割法の成功は, トレーニング用サンプルの量と変動量に大きく依存する。
このようなデータの注釈付けは、それ自体が課題であるが、データセット内の病変の変動性は、異なる種類の病変の有病率にも依存する。
この現象は、アグレッシブなデータ拡張法を用いて、様々な可能性において減少しうる病変分割アルゴリズムに固有のバイアスを与える。
本稿では,CTスライスに現実的な病変を移植し,リッチで制御可能なトレーニングサンプルセットを提供し,最終的にはCT検診における病変を記述するためのセマンティックセグメンテーションネットワークの性能を向上させる方法を提案する。
以上の結果から, 合成病変の移植は, 異なるアーキテクチャを考慮したセグメント化性能の向上(最大12-%)のみならず, 異なる画像合成ネットワーク間で一貫した改善が得られた。
その結果,ctスライスにおける肝病変分画の分画モデルの性能は,サイズ,密度,形状,位置の点で合成的に変化し,肝病変分画モデルの性能が向上することが示唆された。
関連論文リスト
- Enhanced segmentation of femoral bone metastasis in CT scans of patients using synthetic data generation with 3D diffusion models [0.06700983301090582]
本稿では,3次元拡散確率モデル(DDPM)を用いた自動データパイプラインを提案する。
5675巻を新たに作成し,実データと合成データに基づいて3次元U-Netセグメンテーションモデルを訓練し,セグメンテーション性能を比較した。
論文 参考訳(メタデータ) (2024-09-17T09:21:19Z) - Multi-target and multi-stage liver lesion segmentation and detection in multi-phase computed tomography scans [12.090385175034305]
肝臓の病変は、周囲の組織に対して大きさ、形状、食感、コントラストに大きく異なる。
現在の最先端の病変セグメンテーションネットワークは、UNetアーキテクチャに基づいたエンコーダ・デコーダ設計パラダイムを使用している。
提案手法は, 肝病変の相対的セグメンテーション性能を1.6%改善すると共に, 現在の最先端モデルと比較して, 被験者ごとのパフォーマンス変動率を8%低下させる。
論文 参考訳(メタデータ) (2024-04-17T08:05:04Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Attention-based CT Scan Interpolation for Lesion Segmentation of
Colorectal Liver Metastases [2.680862925538592]
大腸癌 (CRLM) に共通する小肝病変は, 畳み込みニューラルネットワーク (CNN) セグメンテーションモデルでは困難である。
我々は,CTスキャンにおける連続3重スライスから中間スライスを生成する,教師なしアテンションベースモデルを提案する。
モデルの出力は元の入力スライスと一致し、2つの最先端3Dセグメンテーションパイプラインにおけるセグメンテーション性能を向上する。
論文 参考訳(メタデータ) (2023-08-30T10:21:57Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Whole-Body Lesion Segmentation in 18F-FDG PET/CT [11.662584140924725]
提案モデルは, 全身の病変を予測するために, 2D と 3D nnUNET アーキテクチャを基礎として設計されている。
提案手法は, ダイススコア, 偽陽性ボリューム, 偽陰性ボリュームの計測値において, 病変のセグメンテーション性能を計測するAutoPet Challengeの文脈で評価する。
論文 参考訳(メタデータ) (2022-09-16T10:49:53Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
フェデレートラーニング(FL)は医用画像解析に広く用いられている。
FLのパフォーマンスは、多発性硬化症(MS)病変セグメンテーションタスクに制限される。
2つの効果的な再重み付け機構によるFLMS病変分割フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-03T14:06:03Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。