論文の概要: Real-Time Cardiac Cine MRI with Residual Convolutional Recurrent Neural
Network
- arxiv url: http://arxiv.org/abs/2008.05044v2
- Date: Thu, 20 Aug 2020 14:35:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 06:08:18.465291
- Title: Real-Time Cardiac Cine MRI with Residual Convolutional Recurrent Neural
Network
- Title(参考訳): Residual Convolutional Recurrent Neural Network を用いたリアルタイム心筋MRI
- Authors: Eric Z. Chen, Xiao Chen, Jingyuan Lyu, Yuan Zheng, Terrence Chen, Jian
Xu, Shanhui Sun
- Abstract要約: リアルタイム心血管再建のための残差畳み込みRNNを提案する。
放射線学者による評価から, 深層学習モデルでは, 圧縮センシングよりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 11.160864233170615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time cardiac cine MRI does not require ECG gating in the data
acquisition and is more useful for patients who can not hold their breaths or
have abnormal heart rhythms. However, to achieve fast image acquisition,
real-time cine commonly acquires highly undersampled data, which imposes a
significant challenge for MRI image reconstruction. We propose a residual
convolutional RNN for real-time cardiac cine reconstruction. To the best of our
knowledge, this is the first work applying deep learning approach to Cartesian
real-time cardiac cine reconstruction. Based on the evaluation from
radiologists, our deep learning model shows superior performance than
compressed sensing.
- Abstract(参考訳): リアルタイム心血管MRIは、データ取得時に心電図のゲーティングを必要とせず、呼吸を保たない患者や異常な心臓リズムを持つ患者に有用である。
しかし、高速な画像取得を実現するために、リアルタイムシネは一般に高度にアンサンプされたデータを取得する。
リアルタイム心血管再建のための残差畳み込みRNNを提案する。
私たちの知る限りでは、これはデカルト的リアルタイム心臓シネ再建にディープラーニングアプローチを適用する最初の仕事です。
放射線科医の評価に基づいて, 深層学習モデルは圧縮センシングよりも優れた性能を示す。
関連論文リスト
- Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
心臓画像の分野では, 深層学習(DL)を用いたシネ・マルチコントラスト再建法を提案する。
提案手法は画像領域とk空間領域の両方を最適化し,高い再構成精度を実現する。
論文 参考訳(メタデータ) (2023-10-10T13:46:11Z) - Cine cardiac MRI reconstruction using a convolutional recurrent network
with refinement [9.173298795526152]
心臓MRI再建における時間的相関を利用した畳み込みリカレントニューラルネットワーク(CRNN)アーキテクチャについて検討した。
これは、単一画像の超解像度リファインメントモジュールと組み合わせて、単一コイルの再構築を4.4%、正規化平均二乗誤差3.9%改善する。
提案モデルでは, ベースライン症例と比較して有意に拡張され, 心臓MRI再建のさらなる改善に有望な可能性を秘めている。
論文 参考訳(メタデータ) (2023-09-23T14:07:04Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - Unsupervised reconstruction of accelerated cardiac cine MRI using Neural
Fields [3.684766600912547]
心臓血管MRI(NF-cMRI)における暗黙的神経野表現に基づく教師なしアプローチを提案する。
提案手法は,26xおよび52xのアンダーサンプリング因子に対するゴールデンアングル・ラジアルマルチコイルのアンダーサンプリングにおいて評価された。
論文 参考訳(メタデータ) (2023-07-24T23:31:36Z) - Implicit Neural Networks with Fourier-Feature Inputs for Free-breathing
Cardiac MRI Reconstruction [21.261567937245808]
本研究は、心臓を暗黙のニューラルネットワークで表現し、心臓の表現が測定値と整合するようにネットワークを適合させる再構築手法を提案する。
提案手法は,最先端の未訓練畳み込みニューラルネットワークと同等あるいはわずかに優れた画像品質を実現する。
論文 参考訳(メタデータ) (2023-05-11T14:14:30Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural
Network [18.433956246011466]
本研究では,運動ブラスト心画像から空間的特徴と時間的特徴を同時に抽出するリカレントニューラルネットワークを提案する。
実験の結果,2つの臨床検査データセットの画質が有意に向上した。
論文 参考訳(メタデータ) (2020-06-23T01:55:57Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
経時的に脳血流量の変化を追跡でき, ピアル表面に向かって伝播する自発性動脈拡張を同定できる。
この新たなイメージング機能は、機能的磁気共鳴イメージング(fMRI)を基盤とした血行動態応答関数を特徴付けるための有望なステップである。
論文 参考訳(メタデータ) (2020-01-14T22:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。