論文の概要: Subspace Implicit Neural Representations for Real-Time Cardiac Cine MR Imaging
- arxiv url: http://arxiv.org/abs/2412.12742v1
- Date: Tue, 17 Dec 2024 10:06:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:00:01.165564
- Title: Subspace Implicit Neural Representations for Real-Time Cardiac Cine MR Imaging
- Title(参考訳): リアルタイム心シンMRIのためのサブスペースインプシトリニューラル表現法
- Authors: Wenqi Huang, Veronika Spieker, Siying Xu, Gastao Cruz, Claudia Prieto, Julia Schnabel, Kerstin Hammernik, Thomas Kuestner, Daniel Rueckert,
- Abstract要約: 本稿では,連続した放射状データを用いたリアルタイム心血管MRIのためのサブスペース暗黙的ニューラル表現に基づく再構成フレームワークを提案する。
本手法は,トレーニング中に連続サンプリングしたラジアルk空間スポークを直接利用することにより,バイナリ化や非一様FFTの必要性を解消する。
- 参考スコア(独自算出の注目度): 9.373081514803303
- License:
- Abstract: Conventional cardiac cine MRI methods rely on retrospective gating, which limits temporal resolution and the ability to capture continuous cardiac dynamics, particularly in patients with arrhythmias and beat-to-beat variations. To address these challenges, we propose a reconstruction framework based on subspace implicit neural representations for real-time cardiac cine MRI of continuously sampled radial data. This approach employs two multilayer perceptrons to learn spatial and temporal subspace bases, leveraging the low-rank properties of cardiac cine MRI. Initialized with low-resolution reconstructions, the networks are fine-tuned using spoke-specific loss functions to recover spatial details and temporal fidelity. Our method directly utilizes the continuously sampled radial k-space spokes during training, thereby eliminating the need for binning and non-uniform FFT. This approach achieves superior spatial and temporal image quality compared to conventional binned methods at the acceleration rate of 10 and 20, demonstrating potential for high-resolution imaging of dynamic cardiac events and enhancing diagnostic capability.
- Abstract(参考訳): 従来の心筋シンMRI法は、特に不整脈やビート・ツー・ビート変化の患者において、時間分解能と連続的な心臓動態を捉える能力を制限した振り返りゲーティングに頼っている。
これらの課題に対処するため,我々は,連続した放射状データを用いたリアルタイム心血管MRIのためのサブスペース暗黙的ニューラル表現に基づく再構成フレームワークを提案する。
このアプローチでは、2つの多層パーセプトロンを用いて空間的および時間的サブスペースベースを学習し、心血管MRIの低ランク特性を活用する。
低解像度再構成で初期化されたネットワークは、空間的詳細と時間的忠実さを回復するために、音声特異的な損失関数を用いて微調整される。
本手法は,トレーニング中に連続サンプリングしたラジアルk空間スポークを直接利用することにより,バイナリ化や非一様FFTの必要性を解消する。
本手法は, 動的心イベントの高分解能イメージングと診断能力の向上に寄与する可能性が示唆された10, 20の加速速度における従来の双極子法と比較して, 空間的, 時間的画質に優れる。
関連論文リスト
- Deep Separable Spatiotemporal Learning for Fast Dynamic Cardiac MRI [22.7085949508143]
MRIは心臓診断において欠かせない役割を担っている。高速イメージングを可能にするため、k空間データをアンサンプすることができる。
この課題は、ディープラーニング再構築手法における広範なトレーニングデータを必要とする。
本研究では,高度に制限された学習データであっても,例外的に良好に動作可能な次元分離型学習手法を活用する,新規で効率的な手法を提案する。
論文 参考訳(メタデータ) (2024-02-24T23:56:15Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
心臓画像の分野では, 深層学習(DL)を用いたシネ・マルチコントラスト再建法を提案する。
提案手法は画像領域とk空間領域の両方を最適化し,高い再構成精度を実現する。
論文 参考訳(メタデータ) (2023-10-10T13:46:11Z) - Unsupervised reconstruction of accelerated cardiac cine MRI using Neural
Fields [3.684766600912547]
心臓血管MRI(NF-cMRI)における暗黙的神経野表現に基づく教師なしアプローチを提案する。
提案手法は,26xおよび52xのアンダーサンプリング因子に対するゴールデンアングル・ラジアルマルチコイルのアンダーサンプリングにおいて評価された。
論文 参考訳(メタデータ) (2023-07-24T23:31:36Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - Implicit Neural Networks with Fourier-Feature Inputs for Free-breathing
Cardiac MRI Reconstruction [21.261567937245808]
本研究は、心臓を暗黙のニューラルネットワークで表現し、心臓の表現が測定値と整合するようにネットワークを適合させる再構築手法を提案する。
提案手法は,最先端の未訓練畳み込みニューラルネットワークと同等あるいはわずかに優れた画像品質を実現する。
論文 参考訳(メタデータ) (2023-05-11T14:14:30Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural
Network [18.433956246011466]
本研究では,運動ブラスト心画像から空間的特徴と時間的特徴を同時に抽出するリカレントニューラルネットワークを提案する。
実験の結果,2つの臨床検査データセットの画質が有意に向上した。
論文 参考訳(メタデータ) (2020-06-23T01:55:57Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
経時的に脳血流量の変化を追跡でき, ピアル表面に向かって伝播する自発性動脈拡張を同定できる。
この新たなイメージング機能は、機能的磁気共鳴イメージング(fMRI)を基盤とした血行動態応答関数を特徴付けるための有望なステップである。
論文 参考訳(メタデータ) (2020-01-14T22:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。