論文の概要: Predictive and Causal Implications of using Shapley Value for Model
Interpretation
- arxiv url: http://arxiv.org/abs/2008.05052v1
- Date: Wed, 12 Aug 2020 01:08:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 04:53:39.214683
- Title: Predictive and Causal Implications of using Shapley Value for Model
Interpretation
- Title(参考訳): モデル解釈におけるshapley値を用いた予測と因果関係
- Authors: Sisi Ma, Roshan Tourani
- Abstract要約: 我々は、予測モデルと因果モデルの両方において重要な概念である、シェープ価値と条件独立の関係を確立した。
その結果,モデルから高いShapley値を持つ変数を排除しても必ずしも予測性能を損なうとは限らないことが示唆された。
さらに重要なことに、変数のShapley値は、関心の対象との因果関係を反映しない。
- 参考スコア(独自算出の注目度): 6.744385328015561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shapley value is a concept from game theory. Recently, it has been used for
explaining complex models produced by machine learning techniques. Although the
mathematical definition of Shapley value is straight-forward, the implication
of using it as a model interpretation tool is yet to be described. In the
current paper, we analyzed Shapley value in the Bayesian network framework. We
established the relationship between Shapley value and conditional
independence, a key concept in both predictive and causal modeling. Our results
indicate that, eliminating a variable with high Shapley value from a model do
not necessarily impair predictive performance, whereas eliminating a variable
with low Shapley value from a model could impair performance. Therefore, using
Shapley value for feature selection do not result in the most parsimonious and
predictively optimal model in the general case. More importantly, Shapley value
of a variable do not reflect their causal relationship with the target of
interest.
- Abstract(参考訳): シャプリーの価値はゲーム理論からの概念である。
近年,機械学習技術が生み出す複雑なモデルの説明に用いられている。
シェープ値の数学的定義は直進的であるが、モデル解釈ツールとして使うという意味はいまだに説明されていない。
本稿では,ベイジアンネットワークフレームワークにおけるShapley値の解析を行った。
予測モデルと因果モデルの両方において重要な概念であるshapley値と条件独立性の関係を確立した。
その結果,モデルからShapley値の高い変数を除去することは必ずしも予測性能を損なうわけではないが,モデルからShapley値の低い変数を除去することは性能を損なう可能性が示唆された。
したがって、特徴選択にShapley値を使用すると、一般の場合において最も同相かつ予測可能なモデルが得られない。
さらに重要なのは、変数のShapley値は、関心の対象との因果関係を反映しない。
関連論文リスト
- Shapley Marginal Surplus for Strong Models [0.9831489366502301]
我々は、Shapley値がモデル予測の正確な説明であるが、機械学習モデル自体が真のデータ生成プロセス(DGP)の貧弱な説明であることを示している。
そこで,本研究では,特徴量から推定されるモデル空間を抽出する,新しい変数重要度アルゴリズム,Shapley Marginal Surplus for Strong Modelsを導入する。
論文 参考訳(メタデータ) (2024-08-16T17:06:07Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
冗長な手法を排除し、単純で効率的なシェープリー推定器SimSHAPを提案する。
既存手法の解析において、推定器は特徴部分集合からランダムに要約された値の線形変換として統一可能であることを観察する。
実験により,SimSHAPの有効性が検証され,精度の高いShapley値の計算が大幅に高速化された。
論文 参考訳(メタデータ) (2023-11-02T06:09:24Z) - Efficient Shapley Values Estimation by Amortization for Text
Classification [66.7725354593271]
我々は,各入力特徴のシェープ値を直接予測し,追加のモデル評価を行なわずに補正モデルを開発する。
2つのテキスト分類データセットの実験結果から、アモルタイズされたモデルでは、Shapley Valuesを最大60倍のスピードアップで正確に見積もっている。
論文 参考訳(メタデータ) (2023-05-31T16:19:13Z) - Exact Shapley Values for Local and Model-True Explanations of Decision
Tree Ensembles [0.0]
決定木アンサンブルの説明にShapley値を適用することを検討する。
本稿では,無作為林に適応し,決定木を増強できる,Shapley値に基づく特徴属性に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-12-16T20:16:02Z) - Is Shapley Explanation for a model unique? [0.0]
特徴の分布とShapley値の関係について検討する。
我々の評価では、特定の特徴に対するShapleyの値は、期待値だけでなく、分散のような他の瞬間にも依存する。
これはモデルの結果(Probability/Log-odds/binary decision、recept/rejectなど)によって異なり、従ってモデルアプリケーションによって異なります。
論文 参考訳(メタデータ) (2021-11-23T15:31:46Z) - Positive-Congruent Training: Towards Regression-Free Model Updates [87.25247195148187]
画像分類において、サンプルワイドの不整合は「負のフリップ」として現れる
新しいモデルは、古い(参照)モデルによって正しく分類されたテストサンプルの出力を誤って予測する。
そこで本研究では,PC トレーニングのための簡易なアプローチである Focal Distillation を提案する。
論文 参考訳(メタデータ) (2020-11-18T09:00:44Z) - Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual
Predictions of Complex Models [6.423239719448169]
シェープ値は、モデルの予測と平均ベースラインの差をモデルへの入力として使用する異なる特徴に関連付けるように設計されている。
これらの「因果」シャプリー値が、それらの望ましい性質を犠牲にすることなく、一般因果グラフに対してどのように導出できるかを示す。
論文 参考訳(メタデータ) (2020-11-03T11:11:36Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Towards Efficient Data Valuation Based on the Shapley Value [65.4167993220998]
本稿では,Shapley値を用いたデータ評価の問題点について検討する。
Shapleyの値は、データ値の概念に対して多くのデシダータを満たすユニークなペイオフスキームを定義する。
本稿では,Shapley値を近似する効率的なアルゴリズムのレパートリーを提案する。
論文 参考訳(メタデータ) (2019-02-27T00:22:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。