論文の概要: Is Shapley Explanation for a model unique?
- arxiv url: http://arxiv.org/abs/2111.11946v1
- Date: Tue, 23 Nov 2021 15:31:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-24 19:17:56.878639
- Title: Is Shapley Explanation for a model unique?
- Title(参考訳): Shapley Explanationはモデルはユニークか?
- Authors: Harsh Kumar, Jithu Chandran
- Abstract要約: 特徴の分布とShapley値の関係について検討する。
我々の評価では、特定の特徴に対するShapleyの値は、期待値だけでなく、分散のような他の瞬間にも依存する。
これはモデルの結果(Probability/Log-odds/binary decision、recept/rejectなど)によって異なり、従ってモデルアプリケーションによって異なります。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Shapley value has recently become a popular way to explain the predictions of
complex and simple machine learning models. This paper is discusses the factors
that influence Shapley value. In particular, we explore the relationship
between the distribution of a feature and its Shapley value. We extend our
analysis by discussing the difference that arises in Shapley explanation for
different predicted outcomes from the same model. Our assessment is that
Shapley value for particular feature not only depends on its expected mean but
on other moments as well such as variance and there are disagreements for
baseline prediction, disagreements for signs and most important feature for
different outcomes such as probability, log odds, and binary decision generated
using same linear probability model (logit/probit). These disagreements not
only stay for local explainability but also affect the global feature
importance. We conclude that there is no unique Shapley explanation for a given
model. It varies with model outcome (Probability/Log-odds/binary decision such
as accept vs reject) and hence model application.
- Abstract(参考訳): shapley valueは最近、複雑でシンプルな機械学習モデルの予測を説明する一般的な方法になっている。
本稿では,シェープ価値に影響を与える要因について論じる。
特に,特徴の分布とShapley値の関係について検討する。
同じモデルから異なる予測結果に対して、Shapleyの説明で生じる違いを議論することで分析を拡張します。
我々の評価では、特定の特徴に対するシェープ値はその期待値に依らず、分散や相違などの他の瞬間にも、同じ線形確率モデル(logit/probit)を用いて生成された確率、対数奇数、および二項決定などの異なる結果に対する基線予測、符号の不一致、および最も重要な特徴に相違がある。
これらの意見の不一致は、ローカルな説明に留まらず、グローバルな特徴の重要性にも影響する。
与えられたモデルに対して独自のShapley説明は存在しないと結論づける。
それはモデル結果(probability/log-odds/binary decision like like accept vs reject)やモデルアプリケーションによって異なります。
関連論文リスト
- Shapley Marginal Surplus for Strong Models [0.9831489366502301]
我々は、Shapley値がモデル予測の正確な説明であるが、機械学習モデル自体が真のデータ生成プロセス(DGP)の貧弱な説明であることを示している。
そこで,本研究では,特徴量から推定されるモデル空間を抽出する,新しい変数重要度アルゴリズム,Shapley Marginal Surplus for Strong Modelsを導入する。
論文 参考訳(メタデータ) (2024-08-16T17:06:07Z) - Efficient Shapley Values Estimation by Amortization for Text
Classification [66.7725354593271]
我々は,各入力特徴のシェープ値を直接予測し,追加のモデル評価を行なわずに補正モデルを開発する。
2つのテキスト分類データセットの実験結果から、アモルタイズされたモデルでは、Shapley Valuesを最大60倍のスピードアップで正確に見積もっている。
論文 参考訳(メタデータ) (2023-05-31T16:19:13Z) - On the Strong Correlation Between Model Invariance and Generalization [54.812786542023325]
一般化は、見えないデータを分類するモデルの能力をキャプチャする。
不変性はデータの変換におけるモデル予測の一貫性を測定する。
データセット中心の視点から、あるモデルの精度と不変性は異なるテストセット上で線形に相関している。
論文 参考訳(メタデータ) (2022-07-14T17:08:25Z) - SHAP-XRT: The Shapley Value Meets Conditional Independence Testing [21.794110108580746]
そこで本研究では,Shapleyに基づく説明手法と条件付き独立性テストが密接に関連していることを示す。
本研究では,条件付きランダム化テスト(CRT, Conditional Randomization Test)にインスパイアされたテスト手法であるSHAPley Explanation Randomization Test(SHAP-XRT)を紹介した。
我々は、Shapley値自体が大域(つまり全体)のnull仮説の期待$p$-値に上限を与えることを示した。
論文 参考訳(メタデータ) (2022-07-14T16:28:54Z) - Explaining predictive models using Shapley values and non-parametric
vine copulas [2.6774008509840996]
特徴間の依存をモデル化するための2つの新しいアプローチを提案する。
提案手法の性能はシミュレーションされたデータセットと実データセットで評価される。
実験により、ブドウのコプラアプローチは、ライバルよりも真のシャプリー値により正確な近似を与えることが示された。
論文 参考訳(メタデータ) (2021-02-12T09:43:28Z) - Why do classifier accuracies show linear trends under distribution
shift? [58.40438263312526]
あるデータ分布上のモデルの精度は、別の分布上の精度のほぼ線形関数である。
2つのモデルが予測で一致する確率は、精度レベルだけで推測できるものよりも高いと仮定します。
分布シフトの大きさが大きければ, 2 つの分布のモデルを評価する場合, 線形傾向が生じなければならない。
論文 参考訳(メタデータ) (2020-12-31T07:24:30Z) - Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual
Predictions of Complex Models [6.423239719448169]
シェープ値は、モデルの予測と平均ベースラインの差をモデルへの入力として使用する異なる特徴に関連付けるように設計されている。
これらの「因果」シャプリー値が、それらの望ましい性質を犠牲にすることなく、一般因果グラフに対してどのように導出できるかを示す。
論文 参考訳(メタデータ) (2020-11-03T11:11:36Z) - The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal
Sufficient Subsets [61.66584140190247]
機能に基づく説明は、自明なモデルでも問題を引き起こすことを示す。
そこで本研究では,2つの一般的な説明書クラスであるシェープリー説明書と十分最小限の部分集合説明書が,基本的に異なる基底的説明書のタイプをターゲットにしていることを示す。
論文 参考訳(メタデータ) (2020-09-23T09:45:23Z) - Predictive and Causal Implications of using Shapley Value for Model
Interpretation [6.744385328015561]
我々は、予測モデルと因果モデルの両方において重要な概念である、シェープ価値と条件独立の関係を確立した。
その結果,モデルから高いShapley値を持つ変数を排除しても必ずしも予測性能を損なうとは限らないことが示唆された。
さらに重要なことに、変数のShapley値は、関心の対象との因果関係を反映しない。
論文 参考訳(メタデータ) (2020-08-12T01:08:08Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
変分分布とは異なる後部近似を用いて意思決定を行うことが示唆された。
これらの理論的な結果から,最適モデルに関するいくつかの近似的提案を学習することを提案する。
おもちゃの例に加えて,単細胞RNAシークエンシングのケーススタディも紹介する。
論文 参考訳(メタデータ) (2020-02-17T19:23:36Z) - Towards Efficient Data Valuation Based on the Shapley Value [65.4167993220998]
本稿では,Shapley値を用いたデータ評価の問題点について検討する。
Shapleyの値は、データ値の概念に対して多くのデシダータを満たすユニークなペイオフスキームを定義する。
本稿では,Shapley値を近似する効率的なアルゴリズムのレパートリーを提案する。
論文 参考訳(メタデータ) (2019-02-27T00:22:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。