論文の概要: Comprehensive forecasting based analysis using stacked stateless and
stateful Gated Recurrent Unit models
- arxiv url: http://arxiv.org/abs/2008.05575v2
- Date: Fri, 14 Aug 2020 15:19:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 04:26:25.308201
- Title: Comprehensive forecasting based analysis using stacked stateless and
stateful Gated Recurrent Unit models
- Title(参考訳): スタックドステートレスおよびステートフルGated Recurrent Unitモデルを用いた総合予測に基づく解析
- Authors: Swayamjit Saha, Niladri Majumder and Devansh Sangani
- Abstract要約: 太陽光発電は再生可能エネルギー源であり、産業で広く利用されている。
経済的に苦しむ国では、他の再生不可能な資源が既に枯渇しているため、エネルギーの潜在的な供給源となる可能性がある。
本稿は、西ベンガルの3つの地域と、GRU(Gated Recurrent Unit)モデルを用いた外部の4つの地域における太陽放射の予測について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Photovoltaic power is a renewable source of energy which is highly used in
industries. In economically struggling countries it can be a potential source
of electric energy as other non-renewable resources are already exhausting. Now
if installation of a photovoltaic cell in a region is done prior to research,
it may not provide the desired energy output required for running that region.
Hence forecasting is required which can elicit the output from a particular
region considering its geometrical coordinates, solar parameter like GHI and
weather parameters like temperature and wind speed etc. Our paper explores
forecasting of solar irradiance on four such regions, out of which three is in
West Bengal and one outside to depict with using stacked Gated Recurrent Unit
(GRU) models. We have checked that stateful stacked gated recurrent unit model
improves the prediction accuracy significantly.
- Abstract(参考訳): 太陽光発電は再生可能エネルギー源であり、産業でよく使われている。
経済的に苦しむ国では、他の再生不可能な資源が既に枯渇しているため、電気エネルギーの潜在的な源になり得る。
現在、研究に先立って領域に太陽電池を設置しても、その領域を走らせるのに必要な所望のエネルギーを供給できない可能性がある。
したがって、幾何座標、ghiのような太陽パラメータ、温度や風速などの気象パラメータなどを考慮して、特定の領域からの出力を導き出す予測が必要となる。
本稿は、西ベンガルの3つの地域とGRU(Gated Recurrent Unit)モデルを用いた外部の4つの地域での太陽放射の予測について検討する。
ステートフルなスタックゲートリカレントユニットモデルによって予測精度が大幅に向上していることを確認した。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Solarcast-ML: Per Node GraphCast Extension for Solar Energy Production [0.0]
このプロジェクトは、太陽エネルギー生産予測機能を統合することで、グローバル気象予報のための最先端グラフニューラルネットワーク(GNN)であるGraphCastモデルの拡張を示す。
提案手法は、GraphCastが生成した天気予報を利用して、ニューラルネットワークモデルを用いて、様々な気象条件に基づいて実際の太陽出力と潜在的な太陽出力の比率を予測する。
その結果, 太陽放射の正確な予測, 収束挙動, トレーニング損失の低減, および太陽放射パターンの正確な予測において, モデルの有効性が示された。
論文 参考訳(メタデータ) (2024-06-19T13:47:05Z) - Comprehensive Forecasting-Based Analysis of Hybrid and Stacked Stateful/ Stateless Models [0.0]
風速は再生可能エネルギーの強力な供給源であり、電力生産のための再生不可能な資源の代替として利用することができる。
本稿では,4つのディープリカレントニューラルネットワークについて論じる。スタックドステートレスLSTM,スタックドステートレスGRU,スタックドステートフルLSTM,スタックドステートフルGRU。
本論文は,それらのアーキテクチャを記述したモデルの性能を包括的に分析し,RMSE値の助けを借りて効率よく結果を導き出す。
論文 参考訳(メタデータ) (2024-04-30T07:18:10Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India [0.0]
特定の地理的位置に対して太陽光発電(PV)発電量を推定することが重要である。
本稿では,太陽PV発電における気象パラメータの影響を,Bagging,Boosting,Stacking,VottingなどのEnsemble ML(EML)モデルを用いて推定する。
その結果,スタックモデルと投票モデルでは,約96%の予測精度が得られた。
論文 参考訳(メタデータ) (2023-01-21T19:16:03Z) - Location-aware green energy availability forecasting for multiple time
frames in smart buildings: The case of Estonia [0.5156484100374058]
本研究の目的は、異なる機械学習モデルを用いて、天気と派生した特徴に基づいてPVシステムの出力パワーを予測することである。
目的は、データを調べて出力パワーを正確に予測する最適なモデルを得ることである。
論文 参考訳(メタデータ) (2022-10-04T14:02:43Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
本稿では,情報的エネルギーベースモデルを事前分布として採用する,新たな生成正当性予測フレームワークを提案する。
生成サリエンシモデルを用いて,画像から画素単位の不確実性マップを得ることができ,サリエンシ予測におけるモデル信頼度を示す。
実験結果から, エネルギーベース先行モデルを用いた生成塩分率モデルでは, 精度の高い塩分率予測だけでなく, 人間の知覚と整合した信頼性の高い不確実性マップを実現できることが示された。
論文 参考訳(メタデータ) (2022-04-19T10:51:00Z) - SunCast: Solar Irradiance Nowcasting from Geosynchronous Satellite Data [2.285928372124628]
本稿では,太陽フレーミングを次のフレーム予測問題として扱う畳み込み長短期記憶ネットワークモデルを提案する。
当社のモデルは、GPUを使わずに1台のマシン上で、北米全体の太陽光放射を最大3時間60秒で予測できる。
論文 参考訳(メタデータ) (2022-01-17T01:55:26Z) - Towards a Peer-to-Peer Energy Market: an Overview [68.8204255655161]
本研究は, 電力市場を中心に, 現状と, プロシューマーによる分散型自己生成能力の増大傾向を比較した。
我々はP2P(Peer-to-Peer)エネルギー市場のための潜在的多層アーキテクチャを導入し、マイクログリッドの一部として、地域生産と地域消費の基本的な側面について議論する。
読者に全体像を示すため、スマートコントラクトやグリッド安定性といったエネルギー取引の関連要素についても精査する。
論文 参考訳(メタデータ) (2020-03-02T20:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。