論文の概要: Benchmarks and Custom Package for Energy Forecasting
- arxiv url: http://arxiv.org/abs/2307.07191v2
- Date: Fri, 04 Oct 2024 07:13:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-07 15:08:01.149927
- Title: Benchmarks and Custom Package for Energy Forecasting
- Title(参考訳): エネルギー予測のためのベンチマークとカスタムパッケージ
- Authors: Zhixian Wang, Qingsong Wen, Chaoli Zhang, Liang Sun, Leandro Von Krannichfeldt, Shirui Pan, Yi Wang,
- Abstract要約: エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
- 参考スコア(独自算出の注目度): 55.460452605056894
- License:
- Abstract: Energy (load, wind, photovoltaic) forecasting is significant in the power industry as it can provide a reference for subsequent tasks such as power grid dispatch, thus bringing huge economic benefits. However, there are many differences between energy forecasting and traditional time series forecasting. On the one hand, traditional time series mainly focus on capturing characteristics like trends and cycles. In contrast, the energy series is largely influenced by many external factors, such as meteorological and calendar variables. On the other hand, energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch, rather than simply pursuing prediction accuracy. In addition, the scale of energy data can also significantly impact the predicted results. In this paper, we collected large-scale load datasets and released a new renewable energy dataset that contains both station-level and region-level renewable generation data with meteorological data. For load data, we also included load domain-specific feature engineering and provided a method to customize the loss function and link the forecasting error to requirements related to subsequent tasks (such as power grid dispatching costs), integrating it into our forecasting framework. Based on such a situation, we conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics, providing a comprehensive reference for researchers to compare different energy forecasting models.
- Abstract(参考訳): エネルギー(負荷、風力、太陽光発電)の予測は電力業界において重要なものであり、電力グリッドディスパッチのようなその後のタスクへの参照を提供することができるため、大きな経済的利益をもたらす。
しかし、エネルギー予測と伝統的な時系列予測には多くの違いがある。
一方、伝統的な時系列は、主にトレンドやサイクルといった特徴を捉えることに重点を置いている。
対照的に、エネルギー系列は気象や暦の変数など、多くの外部要因に影響を受けている。
一方、エネルギー予測は、単に予測精度を追求するのではなく、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
さらに、エネルギーデータのスケールが予測結果に大きく影響する可能性がある。
本稿では,大規模負荷データセットを収集し,気象データを用いた局レベルおよび地域レベルの再生可能データを含む再生可能エネルギーデータセットを新たにリリースした。
負荷データにはロードドメイン固有の機能エンジニアリングが含まれており、損失関数をカスタマイズし、予測エラーをその後のタスクに関連する要件(電力グリッドのディスパッチコストなど)にリンクし、予測フレームワークに統合する方法を提供する。
このような状況を踏まえ、我々は11の評価基準の下で、21の予測手法を用いて広範囲に実験を行い、研究者が異なるエネルギー予測モデルを比較するための総合的な基準を提供する。
関連論文リスト
- Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - The Forecastability of Underlying Building Electricity Demand from Time
Series Data [1.3757257689932039]
ビルのエネルギー消費予測は、ビルのエネルギー管理システムにおいて有望な解決策となっている。
建物の将来的なエネルギー需要を予測するデータ駆動のアプローチは、科学文献で見ることができる。
このような建物のエネルギー需要を予測するために利用できる最も正確な予測モデルの同定は依然として困難である。
論文 参考訳(メタデータ) (2023-11-29T20:47:47Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Meta-Regression Analysis of Errors in Short-Term Electricity Load
Forecasting [0.0]
本稿では,短期電力負荷予測の精度に影響を与える要因を考察するメタ回帰分析(MRA)を提案する。
59の研究で公表された421の予測モデルから得られたデータを利用する。
LSTMアプローチとニューラルネットワークと他のアプローチの組み合わせが最高の予測方法であることがわかった。
論文 参考訳(メタデータ) (2023-05-29T18:26:51Z) - Forecasting Future World Events with Neural Networks [68.43460909545063]
Autocastは数千の予測質問と付随するニュースコーパスを含むデータセットである。
ニュースコーパスは日付によって整理され、人間が過去の予測を行った条件を正確にシミュレートすることができる。
予測タスクで言語モデルをテストし、パフォーマンスが人間専門家のベースラインよりはるかに低いことを確認します。
論文 参考訳(メタデータ) (2022-06-30T17:59:14Z) - Probabilistic forecasts of wind power generation in regions with complex
topography using deep learning methods: An Arctic case [3.3788638227700734]
本研究は,ディープラーニングを用いた確率的予測に関する概念とアプローチを提示する。
深層学習モデルを用いて、ノルウェー北部の風力発電所から日頭発電の確率予測を行う。
論文 参考訳(メタデータ) (2022-03-10T15:52:11Z) - Using Google Trends as a proxy for occupant behavior to predict building
energy consumption [0.0]
そこで本研究では,Google Trendsプラットフォーム上でのトピックの検索量を,利用者の行動と建物利用のプロキシとして活用するアプローチを提案する。
その結果、高い相関性を持つGoogle Trendsデータは、建物のサブセット全体のRMSLEエラーを、GEPIIIコンペティションの上位5チームのパフォーマンスのレベルに効果的に低減できることを示した。
論文 参考訳(メタデータ) (2021-10-31T08:05:23Z) - Random vector functional link neural network based ensemble deep
learning for short-term load forecasting [14.184042046855884]
本稿では,電力負荷予測のための新しいアンサンブルディープランダム関数リンク(edRVFL)を提案する。
隠されたレイヤは、深い表現学習を強制するために積み上げられます。
モデルは各層の出力をアンサンブルすることで予測を生成する。
論文 参考訳(メタデータ) (2021-07-30T01:20:48Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
電力グリッドの効率的な運転にはリアルタイム状態推定と予測が不可欠である。
PhI-GPRは3世代電力系統の位相角,角速度,風力の予測と推定に使用される。
提案手法は観測された状態と観測されていない状態の両方を正確に予測し,推定することができることを示す。
論文 参考訳(メタデータ) (2020-10-09T14:18:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。