論文の概要: Visual Localization for Autonomous Driving: Mapping the Accurate
Location in the City Maze
- arxiv url: http://arxiv.org/abs/2008.05678v3
- Date: Tue, 20 Oct 2020 01:19:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-30 23:13:57.748656
- Title: Visual Localization for Autonomous Driving: Mapping the Accurate
Location in the City Maze
- Title(参考訳): 自動運転のための視覚定位:都市迷路における正確な位置のマッピング
- Authors: Dongfang Liu, Yiming Cui, Xiaolei Guo, Wei Ding, Baijian Yang, and
Yingjie Chen
- Abstract要約: 視覚的局所化のための新しい特徴投票手法を提案する。
本研究では,提案した特徴投票手法を,最先端の3つの視覚的ローカライゼーションネットワークに実装する。
当社のアプローチは、挑戦的な都市内設定においても、ロバストな位置予測を可能にします。
- 参考スコア(独自算出の注目度): 16.824901952766446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate localization is a foundational capacity, required for autonomous
vehicles to accomplish other tasks such as navigation or path planning. It is a
common practice for vehicles to use GPS to acquire location information.
However, the application of GPS can result in severe challenges when vehicles
run within the inner city where different kinds of structures may shadow the
GPS signal and lead to inaccurate location results. To address the localization
challenges of urban settings, we propose a novel feature voting technique for
visual localization. Different from the conventional front-view-based method,
our approach employs views from three directions (front, left, and right) and
thus significantly improves the robustness of location prediction. In our work,
we craft the proposed feature voting method into three state-of-the-art visual
localization networks and modify their architectures properly so that they can
be applied for vehicular operation. Extensive field test results indicate that
our approach can predict location robustly even in challenging inner-city
settings. Our research sheds light on using the visual localization approach to
help autonomous vehicles to find accurate location information in a city maze,
within a desirable time constraint.
- Abstract(参考訳): 正確な位置決めは基本的な能力であり、自動運転車がナビゲーションや経路計画などの他のタスクを遂行するのに必要である。
車両はGPSを使って位置情報を取得するのが一般的である。
しかし、GPSの応用は、様々な種類の構造がGPS信号をシャドウイングし、不正確な位置結果をもたらす都市内を車両が走る場合、深刻な問題を引き起こす可能性がある。
都市環境のローカライズ問題に対処するために,視覚的ローカライズのための新しい特徴投票手法を提案する。
従来のフロントビュー方式とは違って,3方向(前,左,右)からの視点を取り入れ,位置予測の堅牢性を大幅に向上させる。
本研究では,提案手法を3つの最先端ビジュアルローカライズネットワークに分割し,それらのアーキテクチャを適切に修正し,車両操作に適用する。
広域フィールドテストの結果,都市内環境に挑戦してもロバストな位置推定が可能であった。
我々の研究は、視覚的ローカライゼーションアプローチを使って、自動運転車が都市迷路の正確な位置情報を望ましい時間制約で見つけるのを助けることに光を当てています。
関連論文リスト
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
本稿では, 位置決めの精度を高めるために, 視点選択の重要性を強調し, アクティブな位置決め領域について検討する。
私たちのコントリビューションは、リアルタイム操作用に設計されたシンプルなアーキテクチャ、自己教師付きデータトレーニング方法、および実世界のロボティクスアプリケーションに適した計画フレームワークにマップを一貫して統合する能力による、データ駆動型アプローチの使用に関するものです。
論文 参考訳(メタデータ) (2024-07-22T12:32:09Z) - MapLocNet: Coarse-to-Fine Feature Registration for Visual Re-Localization in Navigation Maps [8.373285397029884]
伝統的なローカライゼーションアプローチは、正確に注釈付けされたランドマークからなる高定義(HD)マップに依存している。
本稿では,画像登録にインスパイアされたトランスフォーマーを用いたニューラルリローカライズ手法を提案する。
提案手法は, nuScenes と Argoverse の両方のデータセット上で, 現在最先端の OrienterNet を著しく上回っている。
論文 参考訳(メタデータ) (2024-07-11T14:51:18Z) - Accurate Cooperative Localization Utilizing LiDAR-equipped Roadside Infrastructure for Autonomous Driving [2.0499240875882]
LiDARは、センチメートルレベルの精度で車両のローカライズを容易にする。
これらの高精度な手法は、識別可能なマップ機能を持たない環境での信頼性上の課題に直面することが多い。
本稿では,道路側ユニット(RSU)と車両間通信(V2I)を併用して車両の自己位置決定を支援する手法を提案する。
論文 参考訳(メタデータ) (2024-07-11T10:44:42Z) - Monocular Localization with Semantics Map for Autonomous Vehicles [8.242967098897408]
低レベルのテクスチャ機能の代わりに安定したセマンティック機能を利用する新しい視覚的セマンティックローカライゼーションアルゴリズムを提案する。
まず、セマンティックマップは、カメラやLiDARセンサーを使用して、グラウンドマーカー、レーンライン、ポールなどのセマンティックオブジェクトを検出してオフラインで構築される。
オンラインの視覚的ローカライゼーションは意味的特徴とマップオブジェクトのデータアソシエーションによって行われる。
論文 参考訳(メタデータ) (2024-06-06T08:12:38Z) - A Survey on Visual Map Localization Using LiDARs and Cameras [0.0]
視覚マップのローカライゼーションを2段階プロセスとして定義する。
位置認識の段階では、視覚センサ出力とジオタグ付き地図領域の集合とを比較して、地図内の車両の初期位置を決定する。
地図距離定位の段階では、車両が地図を横切りながら追跡され、視界センサの出力と現在の地図の面積を連続的に調整する。
論文 参考訳(メタデータ) (2022-08-05T20:11:18Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
長距離航法には、計画と局所的な移動可能性の推論の両方が必要である。
学習と計画を統合する学習に基づくアプローチを提案する。
ViKiNGは、画像ベースの学習コントローラを利用できる。
論文 参考訳(メタデータ) (2022-02-23T02:14:23Z) - Semantic Image Alignment for Vehicle Localization [111.59616433224662]
単眼カメラからのセマンティックセグメンテーションを用いた高密度セマンティックマップにおける車両位置推定手法を提案する。
既存の視覚的ローカライゼーションアプローチとは対照的に、システムは追加のキーポイント機能、手作りのローカライゼーションランドマーク抽出器、高価なLiDARセンサーを必要としない。
論文 参考訳(メタデータ) (2021-10-08T14:40:15Z) - Localization of Autonomous Vehicles: Proof of Concept for A Computer
Vision Approach [0.0]
本稿では,複雑なハードウェアシステムやカメラがなくても動作する自律走行車(AV)の視覚的ローカライズ手法を提案する。
提案システムは,KITTIデータセットを用いてテストし,車両の最終的な位置を求める際に平均2mの精度を示した。
論文 参考訳(メタデータ) (2021-04-06T21:09:47Z) - Deep Multi-Task Learning for Joint Localization, Perception, and
Prediction [68.50217234419922]
本稿では,ローカライズエラー下の最先端の自律性スタックで発生する問題について検討する。
我々は,認識,予測,局所化を共同で行うシステムの設計を行う。
本アーキテクチャでは,両タスク間の計算を再利用し,効率よくローカライズエラーを修正できる。
論文 参考訳(メタデータ) (2021-01-17T17:20:31Z) - Real-time Localization Using Radio Maps [59.17191114000146]
パスロスに基づく簡易かつ効果的なローカライゼーション法を提案する。
提案手法では, 受信した信号強度を, 既知の位置を持つ基地局の集合から報告する。
論文 参考訳(メタデータ) (2020-06-09T16:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。