Alleviating Human-level Shift : A Robust Domain Adaptation Method for
Multi-person Pose Estimation
- URL: http://arxiv.org/abs/2008.05717v1
- Date: Thu, 13 Aug 2020 06:41:49 GMT
- Title: Alleviating Human-level Shift : A Robust Domain Adaptation Method for
Multi-person Pose Estimation
- Authors: Xixia Xu, Qi Zou, Xue Lin
- Abstract summary: We propose a novel domain adaptation method for multi-person pose estimation.
The main reason is that a pose, by nature, has typical topological structure and needs fine-grained features in local keypoints.
Our method consists of three modules: Cross-Attentive Feature Alignment (CAFA), Intra-domain Structure Adaptation (ISA) and Inter-domain Human-Topology Alignment (IHTA)
- Score: 33.15192824888279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human pose estimation has been widely studied with much focus on supervised
learning requiring sufficient annotations. However, in real applications, a
pretrained pose estimation model usually need be adapted to a novel domain with
no labels or sparse labels. Such domain adaptation for 2D pose estimation
hasn't been explored. The main reason is that a pose, by nature, has typical
topological structure and needs fine-grained features in local keypoints. While
existing adaptation methods do not consider topological structure of
object-of-interest and they align the whole images coarsely. Therefore, we
propose a novel domain adaptation method for multi-person pose estimation to
conduct the human-level topological structure alignment and fine-grained
feature alignment. Our method consists of three modules: Cross-Attentive
Feature Alignment (CAFA), Intra-domain Structure Adaptation (ISA) and
Inter-domain Human-Topology Alignment (IHTA) module. The CAFA adopts a
bidirectional spatial attention module (BSAM)that focuses on fine-grained local
feature correlation between two humans to adaptively aggregate consistent
features for adaptation. We adopt ISA only in semi-supervised domain adaptation
(SSDA) to exploit the corresponding keypoint semantic relationship for reducing
the intra-domain bias. Most importantly, we propose an IHTA to learn more
domain-invariant human topological representation for reducing the inter-domain
discrepancy. We model the human topological structure via the graph convolution
network (GCN), by passing messages on which, high-order relations can be
considered. This structure preserving alignment based on GCN is beneficial to
the occluded or extreme pose inference. Extensive experiments are conducted on
two popular benchmarks and results demonstrate the competency of our method
compared with existing supervised approaches.
Related papers
- Exploiting Aggregation and Segregation of Representations for Domain Adaptive Human Pose Estimation [50.31351006532924]
Human pose estimation (HPE) has received increasing attention recently due to its wide application in motion analysis, virtual reality, healthcare, etc.
It suffers from the lack of labeled diverse real-world datasets due to the time- and labor-intensive annotation.
We introduce a novel framework that capitalizes on both representation aggregation and segregation for domain adaptive human pose estimation.
arXiv Detail & Related papers (2024-12-29T17:59:45Z) - Generative Domain Adaptation for Face Anti-Spoofing [38.12738183385737]
Face anti-spoofing approaches based on unsupervised domain adaption (UDA) have drawn growing attention due to promising performances for target scenarios.
Most existing UDA FAS methods typically fit the trained models to the target domain via aligning the distribution of semantic high-level features.
We propose a novel perspective of UDA FAS that directly fits the target data to the models, stylizes the target data to the source-domain style via image translation, and further feeds the stylized data into the well-trained source model for classification.
arXiv Detail & Related papers (2022-07-20T16:24:57Z) - Relation Matters: Foreground-aware Graph-based Relational Reasoning for
Domain Adaptive Object Detection [81.07378219410182]
We propose a new and general framework for DomainD, named Foreground-aware Graph-based Reasoning (FGRR)
FGRR incorporates graph structures into the detection pipeline to explicitly model the intra- and inter-domain foreground object relations.
Empirical results demonstrate that the proposed FGRR exceeds the state-of-the-art on four DomainD benchmarks.
arXiv Detail & Related papers (2022-06-06T05:12:48Z) - Domain Generalisation for Object Detection under Covariate and Concept Shift [10.32461766065764]
Domain generalisation aims to promote the learning of domain-invariant features while suppressing domain-specific features.
An approach to domain generalisation for object detection is proposed, the first such approach applicable to any object detection architecture.
arXiv Detail & Related papers (2022-03-10T11:14:18Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Contextual-Relation Consistent Domain Adaptation for Semantic
Segmentation [44.19436340246248]
This paper presents an innovative local contextual-relation consistent domain adaptation technique.
It aims to achieve local-level consistencies during the global-level alignment.
Experiments demonstrate its superior segmentation performance as compared with state-of-the-art methods.
arXiv Detail & Related papers (2020-07-05T19:00:46Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information.
Conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure.
We propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains.
arXiv Detail & Related papers (2020-02-12T09:45:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.