Iterative Surrogate Model Optimization (ISMO): An active learning
algorithm for PDE constrained optimization with deep neural networks
- URL: http://arxiv.org/abs/2008.05730v1
- Date: Thu, 13 Aug 2020 07:31:07 GMT
- Title: Iterative Surrogate Model Optimization (ISMO): An active learning
algorithm for PDE constrained optimization with deep neural networks
- Authors: Kjetil O. Lye, Siddhartha Mishra, Deep Ray and Praveen Chandrasekhar
- Abstract summary: We present a novel active learning algorithm, termed as iterative surrogate model optimization (ISMO)
This algorithm is based on deep neural networks and its key feature is the iterative selection of training data through a feedback loop between deep neural networks and any underlying standard optimization algorithm.
- Score: 14.380314061763508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel active learning algorithm, termed as iterative surrogate
model optimization (ISMO), for robust and efficient numerical approximation of
PDE constrained optimization problems. This algorithm is based on deep neural
networks and its key feature is the iterative selection of training data
through a feedback loop between deep neural networks and any underlying
standard optimization algorithm. Under suitable hypotheses, we show that the
resulting optimizers converge exponentially fast (and with exponentially
decaying variance), with respect to increasing number of training samples.
Numerical examples for optimal control, parameter identification and shape
optimization problems for PDEs are provided to validate the proposed theory and
to illustrate that ISMO significantly outperforms a standard deep neural
network based surrogate optimization algorithm.
Related papers
- Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
We propose a novel approach integrating a two-stage training technique with population-based optimization algorithms incorporating local search capabilities.
Our experiments demonstrate that the proposed method outperforms state-of-the-art gradient-based techniques.
arXiv Detail & Related papers (2024-10-26T17:31:15Z) - Cross-Entropy Optimization for Hyperparameter Optimization in Stochastic Gradient-based Approaches to Train Deep Neural Networks [2.1046873879077794]
We present a cross-entropy optimization method for hyperparameter optimization of a learning algorithm.
The presented method can be applied to other areas of optimization problems in deep learning.
arXiv Detail & Related papers (2024-09-14T00:39:37Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Data-driven evolutionary algorithm for oil reservoir well-placement and
control optimization [3.012067935276772]
Generalized data-driven evolutionary algorithm (GDDE) is proposed to reduce the number of simulation runs on well-placement and control optimization problems.
Probabilistic neural network (PNN) is adopted as the classifier to select informative and promising candidates.
arXiv Detail & Related papers (2022-06-07T09:07:49Z) - High-dimensional Bayesian Optimization Algorithm with Recurrent Neural
Network for Disease Control Models in Time Series [1.9371782627708491]
We propose a new high dimensional Bayesian Optimization algorithm combining Recurrent neural networks.
The proposed RNN-BO algorithm can solve the optimal control problems in the lower dimension space.
We also discuss the impacts of different numbers of the RNN layers and training epochs on the trade-off between solution quality and related computational efforts.
arXiv Detail & Related papers (2022-01-01T08:40:17Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
We consider a broad class of optimization algorithms that are commonly used in practice.
As a consequence, we can leverage the convergence behavior of neural networks.
We believe our approach can also be extended to other optimization algorithms and network theory.
arXiv Detail & Related papers (2020-10-25T17:10:22Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.