論文の概要: MICE: Mining Idioms with Contextual Embeddings
- arxiv url: http://arxiv.org/abs/2008.05759v2
- Date: Wed, 10 Nov 2021 11:20:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-30 22:28:50.053657
- Title: MICE: Mining Idioms with Contextual Embeddings
- Title(参考訳): MICE: コンテキスト埋め込みによるイディオムのマイニング
- Authors: Tadej \v{S}kvorc, Polona Gantar, Marko Robnik-\v{S}ikonja
- Abstract要約: MICEatic式は自然言語処理アプリケーションでは問題となることがある。
我々は,その目的のためにコンテキスト埋め込みを利用するアプローチを提案する。
両埋め込みを用いたディープニューラルネットワークは,既存のアプローチよりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Idiomatic expressions can be problematic for natural language processing
applications as their meaning cannot be inferred from their constituting words.
A lack of successful methodological approaches and sufficiently large datasets
prevents the development of machine learning approaches for detecting idioms,
especially for expressions that do not occur in the training set. We present an
approach, called MICE, that uses contextual embeddings for that purpose. We
present a new dataset of multi-word expressions with literal and idiomatic
meanings and use it to train a classifier based on two state-of-the-art
contextual word embeddings: ELMo and BERT. We show that deep neural networks
using both embeddings perform much better than existing approaches, and are
capable of detecting idiomatic word use, even for expressions that were not
present in the training set. We demonstrate cross-lingual transfer of developed
models and analyze the size of the required dataset.
- Abstract(参考訳): 慣用表現は、その構成語から意味を推測できないため、自然言語処理アプリケーションでは問題となることがある。
方法論的なアプローチと十分な大規模なデータセットの欠如は、特にトレーニングセットで発生しない表現に対して、イディオムを検出するための機械学習アプローチの開発を妨げる。
我々は、その目的のためにコンテキスト埋め込みを使用するMICEと呼ばれるアプローチを提案する。
本稿では,リテラルと慣用的な意味を持つ複数単語表現のデータセットを新たに提示し,その手法を用いて2つの文脈単語埋め込み(ELMoとBERT)に基づいて分類器を訓練する。
両埋め込みを用いたディープニューラルネットワークは,既存の手法よりも優れており,トレーニングセットに存在しない表現に対しても,慣用的な単語使用を検出することができる。
開発したモデルの言語間伝達を実証し,必要なデータセットのサイズを分析する。
関連論文リスト
- A General and Flexible Multi-concept Parsing Framework for Multilingual Semantic Matching [60.51839859852572]
我々は,テキストを多言語セマンティックマッチングのためのマルチコンセプトに分解し,NERモデルに依存するモデルからモデルを解放することを提案する。
英語データセットのQQPとMRPC、中国語データセットのMedical-SMについて包括的な実験を行った。
論文 参考訳(メタデータ) (2024-03-05T13:55:16Z) - Word Sense Induction with Knowledge Distillation from BERT [6.88247391730482]
本稿では、文脈における単語の感覚に注意を払って、事前学習された言語モデル(BERT)から複数の単語感覚を抽出する手法を提案する。
文脈的単語類似性および感覚誘導タスクの実験は、この手法が最先端のマルチセンス埋め込みよりも優れているか、あるいは競合していることを示している。
論文 参考訳(メタデータ) (2023-04-20T21:05:35Z) - Always Keep your Target in Mind: Studying Semantics and Improving
Performance of Neural Lexical Substitution [124.99894592871385]
本稿では,従来の言語モデルと最近の言語モデルの両方を用いた語彙置換手法の大規模比較研究を行う。
目的語に関する情報を適切に注入すれば,SOTA LMs/MLMsによるすでに競合する結果がさらに大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-06-07T16:16:19Z) - HIT at SemEval-2022 Task 2: Pre-trained Language Model for Idioms
Detection [23.576133853110324]
同じマルチワード表現は、異なる文で異なる意味を持つことがある。
これらは、文字通りの意味と慣用的な意味の2つのカテゴリに分けられる。
我々は事前訓練された言語モデルを使用し、文脈対応の文埋め込みを提供する。
論文 参考訳(メタデータ) (2022-04-13T02:45:04Z) - When Does Translation Require Context? A Data-driven, Multilingual
Exploration [71.43817945875433]
談話の適切な処理は機械翻訳(MT)の品質に大きく貢献する
文脈認識型MTにおける最近の研究は、評価中に少量の談話現象を標的にしようとしている。
談話現象のモデル性能を識別・評価するタグの集合である,多言語談話認識ベンチマークを開発した。
論文 参考訳(メタデータ) (2021-09-15T17:29:30Z) - AStitchInLanguageModels: Dataset and Methods for the Exploration of
Idiomaticity in Pre-Trained Language Models [7.386862225828819]
本研究は、MWEを含む自然発生文のデータセットを、細かな意味の集合に手作業で分類する。
我々は,このデータセットを,idiomを含む文の表現生成における言語モデルの有効性と,idiomを用いた言語モデルの有効性を検証するために,2つのタスクで使用する。
論文 参考訳(メタデータ) (2021-09-09T16:53:17Z) - A Simple and Efficient Probabilistic Language model for Code-Mixed Text [0.0]
コード混合テキストに対する効率的な単語埋め込みを構築するための単純な確率的アプローチを提案する。
双方向LSTMとSVMを用いた分類作業の有効性を検討した。
論文 参考訳(メタデータ) (2021-06-29T05:37:57Z) - Accurate Word Representations with Universal Visual Guidance [55.71425503859685]
本稿では,視覚指導から従来の単語埋め込みを視覚的に強調する視覚的表現法を提案する。
各単語が多様な関連画像に対応するマルチモーダルシードデータセットから,小型の単語画像辞書を構築する。
12の自然言語理解および機械翻訳タスクの実験により,提案手法の有効性と一般化能力がさらに検証された。
論文 参考訳(メタデータ) (2020-12-30T09:11:50Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - Deep learning models for representing out-of-vocabulary words [1.4502611532302039]
本稿では,語彙外(OOV)単語を表現するためのディープラーニングモデルの性能評価を行う。
OOV単語を扱うための最善のテクニックはタスクごとに異なるが、OV単語のコンテキストと形態構造に基づいて埋め込みを推論する深層学習手法であるComickは、有望な結果を得た。
論文 参考訳(メタデータ) (2020-07-14T19:31:25Z) - Word Sense Disambiguation for 158 Languages using Word Embeddings Only [80.79437083582643]
文脈における単語感覚の曖昧さは人間にとって容易であるが、自動的アプローチでは大きな課題である。
本稿では,学習前の標準単語埋め込みモデルを入力として,完全に学習した単語認識のインベントリを誘導する手法を提案する。
この手法を用いて、158の言語に対して、事前訓練されたfastText単語の埋め込みに基づいて、センスインベントリのコレクションを誘導する。
論文 参考訳(メタデータ) (2020-03-14T14:50:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。